###
食品研究与开发:2022,43(18):106-113
本文二维码信息
码上扫一扫!
桑叶蛋白超声波辅助提取工艺优化及其氨基酸组分分析
(1.河南工业大学漯河工学院,河南 漯河 462002;2.漯河职业技术学院,河南 漯河 462002;3.河南工业大学粮油食品学院,河南 郑州 450001)
Optimization of Ultrasonic-assisted Extraction Process of Mulberry Leaf Protein and Analysis of Its Amino Acid Composition
(1.Luohe Institute of Technology,Henan University of Technology,Luohe 462002,Henan,China;2.Luohe Vocational Technology College,Luohe 462002,Henan,China;3.College of Food Science and Engineering,Henan University of Technology,Zhengzhou 450001,Henan,China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1543次   下载 842
投稿时间:2022-04-02    
中文摘要: 研究桑叶蛋白的超声波辅助提取工艺,对其氨基酸组分进行分析。在单因素设计的基础上,采用响应面法对液料比、破碎时间、浸提时间、NaCl浓度4个因素进行优化,得到桑叶蛋白提取的最佳工艺:液料比43∶1(mL/g),破碎时间20 min,浸提时间40 min,NaCl浓度0.42%,此条件下桑叶蛋白的提取率为9.19%,提取的桑叶粗蛋白中的氨基酸种类丰富,至少含有17种氨基酸,必需氨基酸含量为29.11g/100g粗蛋白,占总氨基酸含量的37.6%,必需氨基酸(essential amino acids,EAA)/非必需氨基酸(non-essential amino acids,NEAA)为0.603,接近于FAO/WHO 标准规定的必需氨基酸含量40%和EAA/NEAA值0.614。因而桑叶蛋白营养价值较高,是一种十分优良的蛋白质资源。
Abstract:The present study investigated the ultrasonic extraction process of mulberry leaf protein and analyzed its amino acid composition.On the basis of single-factor design,the liquid-solid ratio,crushing time,extraction time,and NaCl concentration were optimized by response surface methodology.The optimal extraction conditions of mulberry leaf protein were obtained as follows:liquid-solid ratio of 43∶1(mL/g),crushing time of 20 min,extraction time of 40 min,and NaCl concentration of 0.42%.Under these conditions,the extraction rate of mulberry leaf protein was 9.19%.The crude protein extracted from mulberry leaves was rich in amino acids,containing at least 17 types of amino acids.The essential amino acid(EAA)content was 29.11 g in 100 g of crude protein,accounting for 37.6%of the total amino acid content,and the EAA/non-essential amino acid(NEAA)ratio was 0.603,which was close to the EAA content of 40%and EAA/NEAA ratio of 0.614 stipulated by FAO/WHO standard.Therefore,mulberry leaf protein has a high nutritional value and is an excellent protein resource.
文章编号:202218015     中图分类号:    文献标志码:
基金项目:河南省高等学校重点科研项目(22B550012、22B550013)
引用文本:


用微信扫一扫

用微信扫一扫