本文已被:浏览 1710次 下载 793次
投稿时间:2021-07-31
投稿时间:2021-07-31
中文摘要: 为探究紫苏对鱼腥味抑制与消除效果以及对鱼汤风味品质的影响,采用气相色谱-嗅闻-质谱联用(gas chromatography-olfactometry-mass spectrometry,GC-O-MS)技术对不同紫苏添加量的鱼汤中挥发性物质进行分离、鉴定与嗅辨解析,并通过感官评价、聚类分析和主成分分析等手段,构建紫苏鱼汤中不同挥发性物质与感官属性间的主成分分析(principal component analysis,PCA)模型。结果表明,鱼肉中特征腥味物质为己醛、庚醛、辛醛、(E)-2-庚烯醛等11种成分,添加紫苏后,11种腥味物质均显著降低(P<0.05)。感官评价结果显示,随着紫苏添加量的增加,鱼汤中鱼腥味与哈喇味等不良感官属性评分显著降低(P<0.05)。结合PCA,再次验证得出庚醛、(E,E)-2,4-癸二烯醛、2-戊基呋喃、壬醛、癸醛、(E)-2-辛烯-1-醇和(E)-2-癸烯醛7种物质是造成不同样本间鱼腥味和哈喇味感官强度差异的关键物质。综上所述,紫苏能够对鱼腥味起到有效的抑制和消除作用。
中文关键词: 紫苏 鱼汤 除腥 气相色谱-嗅闻-质谱联用技术(GC-O-MS) 主成分分析(PCA)
Abstract:To explore the inhibitory effect of Perilla frutescens leaves on the fishy smell and the influence of the leaves on flavor quality of fish soup,gas chromatography-olfactometry-mass spectrometry(GC-O-MS)was employed to separate and identify the volatile compounds in fish soup samples supplemented with different amounts of P.frutescens leaves.Sensory evaluation,cluster analysis(CA),and principal component analysis(PCA)were conducted to build a correlation model between volatile compounds and sensory attributes.The results showed that eleven volatiles such as hexanal,heptanal,octanal,and(E)-2-heptenal were the characteristic fishy compounds in fish.All of them decreased significantly(P<0.05)after the addition of P.frutescens leaves.The sensory evaluation results indicated that with the increase in the addition amount of P.frutescens leaves,the scores of undesirable sensory attributes such as fishy and rancid flavors reduced(P<0.05).The PCA results further suggested that heptanal,(E,E)-2,4-decadienal,2-pentylfuran,nonanal,decanal,(E)-2-octen-1-ol,and(E)-2-decenal were the key compounds causing the differences in fishy and rancid flavor intensity between different samples.In summary,P.frutescens leaves played a role in eliminating fishy smell,which provided a theoretical reference for the development of new natural deodorizer in the future.
keywords: Perilla frutescens fish soup deodorization gas chromatography-olfactory-mass spectrometry(GCO-MS) principal component analysis(PCA)
文章编号:202218002 中图分类号: 文献标志码:
基金项目:“十三五”国家重点研发计划项目(2016YFD0400705)
Author Name | Affiliation |
WU Tian-le,ZHAN Ping*,WANG Peng* | College of Food Engineering and Nutritional Science,Shaanxi Normal University,Xi'an 710119,Shaanxi,China |
引用文本: