2 型糖尿病(type 2 diabetes mellitus,T2DM)已成为全球关注的一个重要问题,过去几十年,2 型糖尿病病例急剧增加,是当前成年人死亡的十大原因之一,对经济和社会发展产生重大影响。据世界卫生组织(World Health Organization,WHO)2019 年统计,全球有4.63 亿成年人患有糖尿病,每年有150 万人死于糖尿病。2017 年全球卫生系统在该疾病方面的支出大约为7 270 亿美元[1]。T2DM 是糖尿病最常见的形式,约90%的糖尿病患者患有2 型糖尿病[2-3],T2DM 主要是胰岛β 细胞生产和分泌的胰岛素受损以及胰岛素抵抗的结果[4]。虽然有药物治疗可以降低T2DM 患者的高血糖,但都是通过增加胰岛素分泌或降低胰岛素抵抗来发挥作用[5]。然而,诊断后和长期并发症在全球普遍存在,糖尿病仍然是失明、肾脏疾病、截肢和心血管疾病的主要原因。
目前,糖尿病的药物治疗主要是长期注射外源性胰岛素和口服降糖药物(磺酰脲类、格列奈、双胍类)。然而,T2DM 的药物治疗对患者来说是一个相当大的成本,并且有严重的副作用。近年来国内外研究显示,植物的使用似乎是传统抗糖尿病治疗的一个不可或缺的替代品,它们具有许多天然生物活性的复杂物质,且副作用较小。开发利用有效的天然、安全、无毒的药食两用植物及其活性成分对糖尿病进行防治,已成为近年来国内外功能性食品和天然药物研究领域的热点[6-8]。
自然界植物源的天然降糖功能活性成分主要有多糖类、膳食纤维类、多酚类、生物碱类、皂苷类等。大量研究表明,天然降糖活性成分具有较强的抗炎抗氧化能力,能有效预防和改善高糖、高脂饮食引起的肝脏炎症和氧化应激[9]。天然降糖功能活性成分作为一种抗糖尿病药物已被广泛应用于细胞、动物、人体研究和临床实验。
多糖是具有多种生物活性的天然高分子聚合物,它们普遍存在于动物、植物和微生物中,主要来源于酮糖、醛糖或其衍生物[10]。研究发现,多糖具有调节免疫、抗氧化、降血脂、降糖和抗肿瘤等作用。植物多糖可有效治疗与饮食相关的代谢性疾病,其具有无毒无害、安全性高、无耐药性、疗效好、来源广、细胞相容性好的明显优势。植物多糖是目前食品科学、医学、分子生物学和许多其他学科中最活跃的研究领域之一。研究发现,铁皮石斛叶多糖通过增加短链脂肪酸(shortchain fatty acids,SCFAs)水平和增加有益细菌(如乳酸杆菌、双歧杆菌和阿克曼氏菌)的丰度,降低糖尿病小鼠的血糖[11]。苦瓜多糖能有效保护糖尿病小鼠胰岛β细胞,改善血脂和氧化应激水平,降低空腹血糖,减少肾组织损伤[12]。苦荞多糖通过抑制细胞因子信号通路抑制因子3(suppressor of cytokinesignaling3,SOCS3)诱导的胰岛素受体底物1(insulin receptor substrate 1,IRS1)蛋白降解来缓解胰岛素抵抗[13]。当归多糖能显著改善高脂和链脲佐菌素诱导的糖尿病大鼠肝脏的胰岛素抵抗,其可能是通过JNK/p38/IRS 信号通路转导的[14]。多糖能调节糖代谢紊乱、提高胰岛素敏感性。黄芪多糖能降低二型糖尿病小鼠的血糖和胰岛素抵抗,减少胰腺和肝脏损伤,提高肠道丁酸水平,改善肠道细菌性疾病[15]。综上所述,多糖防治糖尿病涉及多方面,如改善小肠葡萄糖吸收、调节糖脂代谢、抑制糖异生、促进糖原合成、增加低血糖激素、抑制糖皮质激素分泌等;改善胰岛β 细胞功能障碍、抑制β 细胞凋亡、改善胰岛素抵抗、防止细胞氧化、调节肠道微生态、增加有益细菌的数量。
酚类化合物是一类复杂的生物活性分子,由天然产生的莽草酸和乙酸途径产生,几乎所有药用和食用植物都含有酚类化合物。研究发现多酚类物质具有抗氧化、降血脂、降血糖、抗肿瘤作用[16]。研究发现柠檬片多酚可以显著改善人的肝癌细胞HepG2 的胰岛素抵抗,促进细胞糖原的合成,降低糖异生酶的表达。在高脂饮食诱导的肥胖小鼠中,蓝莓多酚能显著提高胰岛素敏感性和葡萄糖耐量,并对胰岛β 细胞显示出保护作用[17]。食用富含花青素的蓝莓对T2DM 患者的血糖控制产生有益影响[18]。桑葚花青素提取物通过促进糖原合成和减少HepG2 细胞中糖异生的表达来调节糖代谢,并显著改善糖尿病ob/ob 小鼠的胰岛素抵抗[19]。
皂苷由非糖的三萜或甾体皂苷元与糖基部分结合而成,具有抗炎、抗溃疡、抗菌、抗细胞毒性、抗高胆固醇、抗氧化和免疫调节活性[20]。研究发现苦瓜皂苷可改善糖尿病大鼠糖耐量,降低空腹血糖,改善糖尿病大鼠的脂质代谢紊乱,降低应激水平,并调节胰岛素信号通路[12]。Fayek 等[21]发现人心果皂苷提取物具有抗糖尿病潜力,53.6 mg/kg 的提取物能有效降低血糖水平,改善糖代谢。刘芷君等[22]发现茶籽皂苷对链脲佐菌素链(streptozocin,STZ)诱导的2 型糖尿病模型大鼠型具有降血糖作用。Liu 等[23]发现,罗汉果皂苷提取物通过改善HepG2 细胞的胰岛素抵抗,上调糖原合成相关基因的表达来改善糖代谢。Feng 等[24]发现茴香皂苷可以显著降低糖尿病大鼠肝脏糖异生PEPCK、G6P 基因的表达,降低大鼠的血糖。
生物碱是一种结构多样的次级代谢产物,广泛分布于植物界[25]。研究发现,目前有50 种糖尿病药物,它们本质上都是生物碱[26],利用和开发生物碱对糖尿病来说显得尤为重要。李昊宇等[27]发现桑枝的总生物碱提取物可以降低糖尿病小鼠的空腹血糖、调节肠道菌群和糖脂代谢、改善胰岛素分泌功能、保护胰岛β细胞。胡芦巴碱在高脂饲料加STZ 诱导的糖尿病大鼠中发挥了抗糖尿病和抗血脂异常的潜力,对糖尿病大鼠给予150 mg/kg 胡芦巴碱30 d,结果表明,生物碱化合物通过改善肌肉和肝糖原含量降低血糖和胰岛素水平[28]。Zhang 等[29]将不同浓度的富含生物碱的山梨皮提取物灌胃小鼠4 周,发现山梨皮生物碱具有潜在的抗糖尿病和抗高脂血症特性,且提取物减轻了糖尿病小鼠的炎症和胰岛素敏感性,口服葡萄糖耐量得到了改善,血清脂肪酶活性也得到提升。
体内和体外研究的实验证据表明,膳食多酚在通过胰岛素依赖途径在预防和管理T2DM 方面发挥着重要作用,例如保护胰岛β 细胞,减少β 细胞的凋亡,促进胰岛β 细胞增殖、氧化应激的减弱,胰岛素信号的激活,刺激胰腺分泌胰岛素改善糖代谢,抑制消化酶,调节肠道微生物群,改变炎症反应和抑制晚期糖基化终产物的形成。
2.1.1 保护胰岛β 细胞
胰岛β 细胞的主要功能是检测葡萄糖水平和释放足够量的胰岛素,以便葡萄糖被特定的转运体转运到细胞中,随后在线粒体中氧化生成腺嘌呤核苷三磷酸(adenosine triphosphate,ATP)。当胰岛β 细胞产生活性氧时,细胞的抗氧化能力和胰过氧化氢酶(catalase,CAT)、超氧化物歧化酶(superoxide dismutase,SOD)和谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)的表达减少,从而增加胰岛β 细胞的氧化应激并对其功能造成损伤[30]。
胰岛β 细胞功能障碍是导致1 型和2 型糖尿病发生的主要原因之一,是由血糖、血脂异常、炎症和自身免疫引起的[31]。因此,胰岛β 细胞的功能障碍可导致对胰岛素反应降低、胰岛淀粉样肽释放减少等[32]。相反,高血糖是一种可以产生活性氧、糖基化反应和胰岛β 细胞凋亡的疾病。因此,寻找能够保护胰岛β 细胞免受氧化应激的化合物对于预防或延缓糖尿病至关重要[33]。研究发现,酚类化合物可以被视为胰岛β 细胞的潜在保护剂,富含酚类化合物的提取物可以改善胰岛β 细胞功能。Ghorbani 等[34]研究发现,类黄酮可以维持胰岛β 细胞存活率和功能,其潜在的机制包括抑制核因子κB(nuclear factor kappa-B,NF-κB)信号传导、激活PI3K/Akt 通路、抑制一氧化氮和活性氧的生成。当给糖尿病C57BL/6J 小鼠补充蓝莓叶提取物时,结果显示,与胰岛β 细胞增殖和胰岛素信号相关基因,如Ngn3、MafA、Pax4、Ins1-2、GLUT2 等的mRNA 水平增加,以及与细胞凋亡相关的基因FoxO1 表达减少[35]。
2.1.2 改善胰岛素抵抗
胰岛素抵抗是一种以丧失对胰岛素的接受能力为特征的病症。胰岛素抵抗已成为一个严重的健康问题,包括肥胖、糖尿病、高血压和心血管疾病[36]。然而,其分子机制尚不清楚,需要未来进行广泛的研究。临床上,胰岛素抵抗指的是超过维持葡萄糖稳态所需的正常胰岛素浓度。另一方面,胰岛素抵抗的人和动物将高胰岛素血症作为补偿,使胰岛素靶组织的葡萄糖消耗正常化[37]。
研究表明,植物酚类化合物可以通过多种机制改善胰岛素抵抗,例如激活HepG2 细胞中的IRS/PI3K/AKT 信号通路,减少相关基因的表达脂肪生成(例如SREBP1 和FAS)。此外,IRS-1 和IRS-2 的表达增加,GSK3β 的表达减少,都可以改善糖尿病小鼠肝脏的胰岛素抵抗[35]。此外,富含花青素的菊类和黑莓类对2 型糖尿病Wistar 大鼠的胰岛素抵抗具有改善和预防的作用[38]。Xia 等[39]发现,镇江香醋的酚提取物通过增加葡萄糖摄取和消耗、改善糖原合成、减少糖异生、抑制磷酸化IRS-1 表达和激活PI3K/Akt 通路,进而改善高糖诱导的HepG2 细胞胰岛素抵抗。口服桑葚花青素提取物增加了IRS1、SREBP1c、PGC-1α 的表达,以及激活AMPK 的表达降低雄性db/db 小鼠的胰岛素抵抗[40]。在另一项研究中,金丝桃酚提取物通过激活AMPK/PI3K/Akt/GSK3β 途径和调节GLUT4、PPARγ 和PPAR-α 的表达,改善2 型糖尿病KK-Ay 小鼠的葡萄糖代谢[41]。
2.1.3 抑制自由基和减轻氧化应激
当机体处于高糖高脂高胰岛素状态下,就会发生氧化应激。研究发现,活性氧(reactive oxygen species,ROS)的过度积累或具有抗氧化能力的中间体耗尽会改变机体氧化还原平衡并导致氧化应激反应。除此之外,CAT、SOD、GPx-Px、谷胱甘肽还原酶(glutathione reductase,GR)和过氧化物酶(peroxidase,PRXs)在机体抗氧化中发挥着重要作用,补充多酚能够通过增强抗氧化酶SOD、CAT、GPx-Px 和GR 的活性来恢复氧化还原稳态[42]。研究发现,这些抗氧化酶的活性与Nrf2 信号通路有关。多酚还可以通过干扰NF-κB 和丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)控制的炎症信号级联反应来降低炎症反应,从而抑制氧化应激[43]。
2.2.1 改善糖代谢
糖代谢受损引发的高血糖症是非胰岛素依赖型糖尿病的主要代谢紊乱综合症之一。碳水化合物的消化和吸收改变、糖原储备耗尽、糖异生增强和肝葡萄糖过度生成、β 细胞功能障碍、外周组织对胰岛素的抵抗以及胰岛素信号通路受损是高血糖的重要原因。研究发现,多酚类物质可以改善糖代谢紊乱。阿魏酸通过提高糖尿病大鼠的葡萄糖激酶活性、糖原的生成和血浆胰岛素来有效地降低血糖[44]。糖尿病大鼠补充橙皮苷和柚皮素后,葡萄糖激酶活性增强、糖原含量增加,糖尿病得到了更好的控制[45]。研究表明,膳食中的多酚会直接影响葡萄糖摄取,体外研究表明,白藜芦醇、表没食子儿茶素没食子酸酯(epigallocatechin gallate,EGCG)和槲皮素等几种多酚主要通过激活AMPK 途径将GLUT4 转运至质膜,从而增强肌肉和脂肪细胞的葡萄糖摄取[46]。AMPK 是细胞能量的重要传感器,在调节新陈代谢中起重要作用;AMPK 的激活与肥胖、T2DM 的减轻有关,是许多抗糖尿病药物激活的主要靶点[47],与常用药物二甲双胍相比,多酚对AMPK 的激活作用显著增加[48]。PI3K 的激活也被认为是对抗糖尿病和葡萄糖摄取的主要激活途径[49]。
2.2.2 改变炎症反应
糖脂毒性是指葡萄糖和脂肪酸水平的增加会对胰岛β 细胞的功能产生有害影响[50]。慢性糖脂毒性导致活性氧的过度生成,从而导致蛋白质氧化、产生促炎信号。炎症反应开始,巨噬细胞开始产生促炎性肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白细胞介素和其他标记物[51]。TNF-α 和白细胞介素-6(interleukin-6,IL-6)激活MAPK 和JAK/STAT 通路,使得细胞发生胰岛素抵抗和损伤。研究表明,多酚可以使多种炎症标记物下调表达,如蛋白激酶C(protein kinase C,PKC)、环氧合酶-2(cyclooxygenase-2,COX-2),并抑制了多种途径,如诱导型一氧化氮合酶((inducible nitric oxide sythase,iNOS)、丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、NF-κB 等[52]。多酚还通过抑制糖尿病过度表达的各种蛋白激酶或通过激活炎症途径间接参与糖尿病,从而阻断信号通路[53]。石榴中的多酚通过降低促炎因子的表达起到抗炎作用,此外,它还可以促进脂质代谢。在肥胖诱导的糖尿病小鼠中,服用多酚可以抑制肝脏和脂肪组织中NF-κB 和TNF-α 基因的表达[54]。除了增强胰岛素信号,花青素的抗糖尿病作用也与其抗炎和抗氧化潜力有关。用花青素衍生物C3G 和氯化氰(50 μmol/L)培养糖尿病细胞(人肾近曲小管细胞HK-2),可显著增强PPRARα 和LXRα 基因的表达[55],从而进一步下调由低血糖引起的促炎症细胞因子基因的表达。另一项关于HK-2 细胞研究表明,花青素通过阻断p38 MAPK 和ERK1/2 的磷酸化来降低凋亡相关基因的表达[56],从而进一步降低血糖水平,减少糖尿病神经病变的影响[57]。
2.2.3 调节肠道菌群
肠道微生物负责控制能量代谢、体质量、促炎活性、胆汁酸代谢、胰岛素抵抗和调节肠道激素[58]。肠道微生物的不平衡会导致肠道通透性、炎症、免疫系统和能量代谢改变,直接影响T2DM 的发展[59]。一些研究表明,2 型糖尿病患者和健康人的肠道微生物群完全不同。Larsen 等[60]对T2DM 患者和非糖尿病患者肠道微生物群组成的差异进行研究,发现与非糖尿病患者相比,糖尿病患者的厚壁菌门和梭状芽孢杆菌类的比例显著降低,而与血糖呈正相关的β-葡萄球菌在T2DM 患者的粪便中高度富集。此外研究还发现,食物也可以影响肠道微生物群的多样性。研究结果显示,膳食多酚和富含多酚的食物可降低T2DM 或其并发症发生的风险[61]。此外,多酚及其微生物代谢物可以有效调节肠道微生物群的平衡,改善葡萄糖代谢[62]。
除了传统的治疗方法,研究人员通过开发利用肠道微生物治疗T2DM。研究发现多酚对阿克曼菌有积极的调节作用。例如,发现富含多酚的葡萄和蔓越莓提取物显著增加了阿克曼菌的丰度,阿克曼菌阻止了糖尿病中糖异生葡萄糖-6-磷酸酶mRNA 表达的增加[63]。同样,双歧杆菌也可能在预防T2DM 方面发挥作用。研究表明,多酚还促进双歧杆菌的增加,例如,石榴提取物可以促进双歧杆菌和乳酸杆菌的增加、食用野生蓝莓饮料后双歧杆菌的数量显著增加,这表明多酚对肠道微生物群组成有重要的调节作用,这种调节作用可能与双歧杆菌恢复肠道屏障功能和降低肠道上皮通透性有关,从而防止病原微生物和炎症物质的渗透。因此,双歧杆菌可能在T2DM 中发挥保护作用。简言之,多酚与肠道微生物之间存在相互作用,首先,多酚改变肠道微生物群并促进有益细菌的生长,如阿克曼氏菌、双歧杆菌、粪杆菌等;其次,不仅多酚,其微生物代谢物的生物活性对糖尿病的治疗具有积极的作用。
2.2.4 调节相关代谢物和代谢通路
糖尿病是一种由胰岛素绝对缺乏或相对缺乏而导致的葡萄糖不耐受疾病[64]。代谢组学的发展对糖尿病的防治具有推动作用。代谢组学是指对生物样品代谢产物进行综合分析,以揭示代谢产物的变化。这些代谢物被认为是生物标志物,也可用于识别与疗效、副作用甚至毒性相关的靶点和途径[65]。研究发现糖酵解/糖异生代谢(葡萄糖、丙酮酸、乳酸)、三羧酸(tricarboxylic acid,TCA)循环(琥珀酸、柠檬酸盐)、脂质代谢(乙酰乙酸盐、乙酸盐)和氨基酸代谢途径(缬氨酸、亮氨酸和异亮氨酸、马尿酸盐、肌酸)是糖尿病模型中主要的代谢途径和生物标志物,植物多酚通过不同的机制影响这些代谢途径。Mediani 等[66]发现,与正常组相比,肥胖糖尿病大鼠的主要生物标志物是葡萄糖、胆碱、牛磺酸和肌酸,用珠子草提取物后,TCA 中间体的水平也增加,这导致了TCA 循环的改善,在肥胖的糖尿病大鼠中,P.niruri 提取物也显著降低了血糖水平并改善了脂质代谢。Azam 等[67]给糖尿病大鼠灌胃500 mg/kg 的Orthosiphon stamineus 水提取物,通过代谢途径分析表明,Orthosiphon stamineus 水提取物通过调节TCA 循环(琥珀酸盐、柠檬酸盐、羟基丁酸盐)、糖酵解/糖异生(葡萄糖、丙酮酸盐、乳酸盐)、脂质代谢(乙酰乙酸盐、乙酸盐)和氨基酸代谢(牛磺酸、丙氨酸、马尿酸盐、肌酸)来促进抗糖尿病活性。
随着人们生活质量的不断提高,T2DM 的患病率也随之升高,抗糖尿病新药研发成为近年来的迫切需求。天然产物在细胞、动物实验和临床实验等多层面研究对T2DM 发生发展和治疗过程中具有重要影响。天然产物凭借多靶点、多途径、高效低毒、疗效持久和作用温和的特点,在治疗T2DM 方面具有较高优势。
[1] SAEEDI P, PETERSOHN I, SALPEA P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Research and Clinical Practice,2019,157:107843.
[2] AIYSHA THOMPSON K. Type 2 diabetes mellitus and glucagon like peptide-1 receptor signalling[J].Clinical&Experimental Pharmacology,2013,3(4):1-18.
[3] OZOUGWU O.The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus[J].Journal of Physiology and Pathophysiology,2013,4(4):46-57.
[4] KAHN S E, COOPER M E, DEL PRATO S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future[J].Lancet,2014,383(9922):1068-1083.
[5] DEFRONZO R A,ELDOR R,ABDUL-GHANI M.Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes[J].Diabetes Care,2013,36(Suppl 2):S127-S138.
[6] GO H K, RAHMAN M M, KIM G B, et al. Antidiabetic effects of yam(Dioscorea batatas)and its active constituent,allantoin,in a rat model of streptozotocin-induced diabetes[J].Nutrients,2015,7(10):8532-8544.
[7] CAZAROLLI L H,PEREIRA D F,KAPPEL V D,et al.Insulin signaling: A potential signaling pathway for the stimulatory effect of kaempferitrin on glucose uptake in skeletal muscle[J]. European Journal of Pharmacology,2013,712(1/3):1-7.
[8] WU Y,XIA Z Y,DOU J,et al.Protective effect of ginsenoside Rb1 against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats[J]. Molecular Biology Reports, 2011, 38(7):4327-4335.
[9] LUO J, FORT D M, CARLSON T J, et al. Cryptolepis sanguinolenta: An ethnobotanical approach to drug discovery and the isolation of a potentially useful new antihyperglycaemic agent[J]. Diabetic Medicine:a Journal of the British Diabetic Association,1998,15(5):367-374.
[10] DEDHIA N, MARATHE S J, SINGHAL R S. Food polysaccharides: A review on emerging microbial sources, bioactivities, nanoformulations and safety considerations[J]. Carbohydrate Polymers,2022,287:119355.
[11] FANG J Y, LIN Y, XIE H L, et al. Dendrobium officinale leaf polysaccharides ameliorated hyperglycemia and promoted gut bacterial associated SCFAs to alleviate type 2 diabetes in adult mice[J].Food Chemistry:X,2022,13:100207.
[12] WANG Q, WU X Y, SHI F L, et al. Comparison of antidiabetic effects of saponins and polysaccharides from Momordica charantia L.in STZ-induced type 2 diabetic mice[J]. Biomedicine & Pharmacotherapy,2019,109:744-750.
[13] REN Q,SUN S S,LI M Y,et al.Structural characterization and Tartary buckwheat polysaccharides alleviate insulin resistance by suppressing SOCS3-induced IRS1 protein degradation[J]. Journal of Functional Foods,2022,89:104961.
[14] LIU W J, LI Z Z, FENG C X, et al. The structures of two polysaccharides from Angelica sinensis and their effects on hepatic insulin resistance through blocking RAGE[J]. Carbohydrate Polymers,2022,280:119001.
[15] LIU Y M, LIU W, LI J, et al. A polysaccharide extracted from Astragalus membranaceus residue improves cognitive dysfunction by altering gut microbiota in diabetic mice[J]. Carbohydrate Polymers,2019,205:500-512.
[16] 王瑞雪,张筠,崔艳伟,等.柠檬皮多酚成分分析及其对胰岛素抵抗HepG2 细胞糖代谢的影响[J]. 食品工业科技, 2022, 43(23):310-317.WANG Ruixue, ZHANG Yun, CUI Yanwei, et al. Analysis of polyphenols from lemon peel and its effect on glucose metabolism in insulin-resistant HepG2 cells[J]. Science and Technology of Food Industry,2022,43(23):310-317.
[17] VENDRAME S, DEL BO′ C, CIAPPELLANO S, et al. Berry fruit consumption and metabolic syndrome[J]. Antioxidants, 2016, 5(4):34.
[18] LIU W X,MAO Y P,SCHOENBORN J,et al.Whole blueberry protects pancreatic beta-cells in diet-induced obese mouse[J]. Nutrition&Metabolism,2019,16:34.
[19] ROCHA D M U P,CALDAS A P S,DA SILVA B P,et al.Effects of blueberry and cranberry consumption on type 2 diabetes glycemic control: A systematic review[J]. Critical Reviews in Food Science and Nutrition,2019,59(11):1816-1828.
[20] 王月,苏蓉,刘振华,等.皂苷类化合物降血糖作用及其机制研究进展[J].天然产物研究与开发,2023,35(1):159-170.WANG Yue, SU Rong, LIU Zhenhua, et al. Research progress on hypoglycemic effect and mechanism of saponins[J].Natural Product Research and Development,2023,35(1):159-170.
[21] FAYEK N M,MONEM A R,MOSSA M Y,et al.Chemical and biological study of Manilkara zapota (L.) Van Royen leaves (Sapotaceae) cultivated in Egypt[J]. Pharmacognosy Research, 2012, 4(2):85-91.
[22] 刘芷君,林玲,雷郑延,等.茶籽皂苷对链脲佐菌素诱导的糖尿病大鼠血糖的影响[J].食品科学,2020,41(19):179-184.LIU Zhijun,LIN Ling,LEI Zhengyan,et al.Effect of tea seed saponins on blood glucose in streptozotocin-induced diabetic rats[J].Food Science,2020,41(19):179-184.
[23] LIU X,ZHANG J J,LI Y M,et al.Mogroside derivatives exert hypoglycemics effects by decreasing blood glucose level in HepG2 cells and alleviates insulin resistance in T2DM rats[J]. Journal of Functional Foods,2019,63:103566.
[24] FENG M, LIU F, XING J L, et al. Anemarrhena saponins attenuate insulin resistance in rats with high-fat diet-induced obesity via the IRS-1/PI3K/AKT pathway[J]. Journal of Ethnopharmacology, 2021,277:114251.
[25] CHRISTODOULOU M I, TCHOUMTCHOUA J, SKALTSOUNIS A L, et al. Natural alkaloids intervening the insulin pathway: New hopes for anti-diabetic agents?[J]. Current Medicinal Chemistry,2019,26(32):5982-6015.
[26] DEBNATH B,SINGH W S,DAS M,et al.Role of plant alkaloids on human health: A review of biological activities[J]. Materials Today Chemistry,2018,9:56-72.
[27] 李昊宇,何华秋,李强.桑枝生物碱对糖脂代谢的作用[J].中国糖尿病杂志,2022,30(2):154-158.LI Haoyu,HE Huaqiu,LI Qiang.Effect of Sangzhi alkaloids on glucose and lipid metabolism[J].Chinese Journal of Diabetes,2022,30(2):154-158.
[28] SUBRAMANIAN S P,PRASATH G S.Antidiabetic and antidyslipidemic nature of trigonelline, a major alkaloid of fenugreek seeds studied in high-fat-fed and low-dose streptozotocin-induced experimental diabetic rats[J]. Biomedicine & Preventive Nutrition, 2014,4(4):475-480.
[29] ZHANG X P, JIN Y, WU Y N, et al. Anti-hyperglycemic and antihyperlipidemia effects of the alkaloid-rich extract from barks of Litsea glutinosa in ob/ob mice[J]. Scientific Reports, 2018, 8(1):12646.
[30] 杨坡,李艳红,韩扬卓,等.禁食疗法减轻2 型糖尿病作用机制的研究进展[J].中国病理生理杂志,2021,37(6):1146-1152.YANG Po, LI Yanhong, HAN Yangzhuo, et al. Mechanism of fasting treatment to attenuate type 2 diabetes mellitus[J].Chinese Journal of Pathophysiology,2021,37(6):1146-1152.
[31] FU Z,GILBERT E R,LIU D M.Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes[J]. Current Diabetes Reviews,2013,9(1):25-53.
[32] KAHN S E.The relative contributions of insulin resistance and betacell dysfunction to the pathophysiology of Type 2 diabetes[J]. Diabetologia,2003,46(1):3-19.
[33] DALL′ASTA M,BAYLE M,NEASTA J,et al.Protection of pancreatic β-cell function by dietary polyphenols[J]. Phytochemistry Reviews,2015,14(6):933-959.
[34] GHORBANI A, RASHIDI R, SHAFIEE-NICK R. Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review[J].Biomedicine&Pharmacotherapy,2019,111:947-957.
[35] LI H, PARK H M, JI H S, et al. Phenolic-enriched blueberry-leaf extract attenuates glucose homeostasis, pancreatic β-cell function,and insulin sensitivity in high-fat diet-induced diabetic mice[J].Nutrition Research,2020,73:83-96.
[36] PENNO G, SOLINI A, ORSI E, et al. Insulin resistance, diabetic kidney disease, and all-cause mortality in individuals with type 2 diabetes: A prospective cohort study[J]. BMC Medicine, 2021, 19(1):66.
[37] SCHINNER S, SCHERBAUM W A, BORNSTEIN S R, et al. Molecular mechanisms of insulin resistance[J]. Diabetic Medicine,2005,22(6):674-682.
[38] LI F H, ZHANG B, CHEN G, et al. The novel contributors of antidiabetic potential in mulberry polyphenols revealed by UHPLC-HRESI-TOF-MS/MS[J]. Food Research International, 2017, 100(Pt 1):873-884.
[39] XIA T, DUAN W H, ZHANG Z J, et al. Polyphenol-rich extract of Zhenjiang aromatic vinegar ameliorates high glucose-induced insulin resistance by regulating JNK-IRS-1 and PI3K/Akt signaling pathways[J].Food Chemistry,2021,335:127513.
[40] YAN F J, ZHENG X D. Anthocyanin-rich mulberry fruit improves insulin resistance and protects hepatocytes against oxidative stress during hyperglycemia by regulating AMPK/ACC/mTOR pathway[J].Journal of Functional Foods,2017,30:270-281.
[41] LV Y B, HAO J, LIU C, et al. Anti-diabetic effects of a phenolicrich extract from Hypericum attenuatum Choisy in KK-Ay mice mediated through AMPK/PI3K/Akt/GSK3β signaling and GLUT4,PPARγ, and PPARα expression[J]. Journal of Functional Foods,2019,61:103506.
[42] KANSANEN E, KUOSMANEN S M, LEINONEN H, et al. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer[J].Redox Biology,2013,1(1):45-49.
[43] PARK C H,PARK K H,HONG S G,et al.Oligonol,a low-molecular-weight polyphenol derived from lychee peel,attenuates diabetesinduced pancreatic damage by inhibiting inflammatory responses via oxidative stress-dependent mitogen-activated protein kinase/nuclear factor-kappa B signaling[J]. Phytotherapy Research, 2018,32(12):2541-2550.
[44] JUNG E H,KIM S R,HWANG I K,et al.Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJdb/db mice[J]. Journal of Agricultural and Food Chemistry, 2007,55(24):9800-9804.
[45] JUNG U J, LEE M K, JEONG K S, et al. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucoseregulating enzymes in C57BL/KsJ-db/db mice[J]. The Journal of Nutrition,2004,134(10):2499-2503.
[46] ZHANG B,KANG M X,XIE Q P,et al.Anthocyanins from Chinese bayberry extract protect β cells from oxidative stress-mediated injury via HO-1 upregulation[J]. Journal of Agricultural and Food Chemistry,2011,59(2):537-545.
[47] TOWLER M C, HARDIE D G. AMP-activated protein kinase in metabolic control and insulin signaling[J]. Circulation Research,2007,100(3):328-341.
[48] ZANG M W, XU S Q, MAITLAND-TOOLAN K A, et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice[J].Diabetes,2006,55(8):2180-2191.
[49] KUMAR R,BALAJI S,UMA T S,et al.Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K[J]. Journal of Ethnopharmacology, 2009, 126(3):533-537.
[50] POITOUT V, AMYOT J, SEMACHE M, et al. Glucolipotoxicity of the pancreatic beta cell[J]. Biochimica et Biophysica Acta, 2010,1801(3):289-298.
[51] HUANG C N, WANG C J, YANG Y S, et al. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance[J].Food&Function,2016,7(1):475-482.
[52] KIM D, HAN G D. Ameliorating effects of fermented rice bran extract on oxidative stress induced by high glucose and hydrogen peroxide in 3T3-L1 adipocytes[J]. Plant Foods for Human Nutrition,2011,66(3):285-290.
[53] ANWAR S,KHAN S,ANJUM F,et al.Myricetin inhibits breast and lung cancer cells proliferation via inhibiting MARK4[J]. Journal of Cellular Biochemistry,2022,123(2):359-374.
[54] HONTECILLAS R, O′SHEA M, EINERHAND A, et al. Activation of PPAR γ and α by punicic acid ameliorates glucose tolerance and suppresses obesity - related inflammation[J]. Journal of the American College of Nutrition,2009,28(2):184-195.
[55] DU C Y, SHI Y H, REN Y Z, et al. Anthocyanins inhibit high-glucose-induced cholesterol accumulation and inflammation by activating LXRα pathway in HK-2 cells[J]. Drug Design, Development and Therapy,2015,9:5099-5113.
[56] WEI J Y, WU H J, ZHANG H Q, et al. Anthocyanins inhibit high glucose-induced renal tubular cell apoptosis caused by oxidative stress in db/db mice[J]. International Journal of Molecular Medicine,2018,41(3):1608-1618.
[57] MIRANDA-DÍAZ A G,PAZARÍN-VILLASEÑOR L,YANOWSKYESCATELL F G, et al. Oxidative stress in diabetic nephropathy with early chronic kidney disease[J]. Journal of Diabetes Research,2016,2016:7047238.
[58] CANI P D,NEYRINCK A M,FAVA F,et al.Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia[J].Diabetologia,2007,50(11):2374-2383.
[59] ROGERS G B,KEATING D J,YOUNG R L,et al.From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways[J].Molecular Psychiatry,2016,21(6):738-748.
[60] LARSEN N, VOGENSEN F K, VAN DEN BERG F W J, et al. Gut microbiota in human adults with type 2 diabetes differs from nondiabetic adults[J].PLoS One,2010,5(2):e9085.
[61] NIE Q X, CHEN H H, HU J L, et al. Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota[J]. Critical Reviews in Food Science and Nutrition,2019,59(6):848-863.
[62] CARDONA F, ANDRÉS-LACUEVA C, TULIPANI S, et al. Benefits of polyphenols on gut microbiota and implications in human health[J]. The Journal of Nutritional Biochemistry, 2013, 24(8):1415-1422.
[63] ROOPCHAND D E,CARMODY R N,KUHN P,et al.Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome[J].Diabetes,2015,64(8):2847-2858.
[64] ZIMMET P, ALBERTI K G, SHAW J. Global and societal implications of the diabetes epidemic[J]. Nature, 2001, 414(6865): 782-787.
[65] KADDURAH-DAOUK R, WEINSHILBOUM R, NETWORK P R.Metabolomic signatures for drug response phenotypes: Pharmacometabolomics enables precision medicine[J]. Clinical Pharmacology and Therapeutics,2015,98(1):71-75.
[66] MEDIANI A, ABAS F, MAULIDIANI M, et al. Metabolic and biochemical changes in streptozotocin induced obese-diabetic rats treated with Phyllanthus niruri extract[J]. Journal of Pharmaceutical and Biomedical Analysis,2016,128:302-312.
[67] AZAM A A,PARIYANI R,ISMAIl I S,et al.Urinary metabolomics study on the protective role of Orthosiphon stamineus in Streptozotocin induced diabetes mellitus in rats via 1H NMR spectroscopy[J].BMC complementary and alternative medicine, 2017, 17: 1-13.
Research Progress in the Anti-Type 2 Diabetes Mellitus Mechanisms of Natural Products Dietary Polyphenols
张姣姣,马壮,何大俊,等.天然产物膳食多酚的抗2 型糖尿病机制研究进展[J].食品研究与开发,2025,46(5):218-224.
ZHANG Jiaojiao,MA Zhuang,HE Dajun,et al. Research Progress in the Anti-Type 2 Diabetes Mellitus Mechanisms of Natural Products Dietary Polyphenols[J].Food Research and Development,2025,46(5):218-224.