茶 树[Camellia sinensis(L.)O. Kuntze]是 山 茶 科(Theaceae)山茶属(Camellia L.)多年生木本常绿植物,其新梢加工而成的茶叶产品,是世界上仅次于水的消费最多的饮料[1-2]。根据加工工艺及产品多酚氧化程度,可将茶叶分为六大类,包括微发酵的白茶、半发酵的乌龙茶、部分发酵的黄茶、不发酵的绿茶、全发酵的红茶和后发酵的黑茶[3-4]。其中,红茶是采摘鲜叶后,经过萎凋、揉捻、发酵、干燥等工序加工而成的茶叶产品,具有“香高、味甜、红汤红叶”的品质特征,根据加工工艺的不同主要分为工夫红茶、小种红茶和红碎茶3 种[5]。2023 年,中国红茶的产销量分别达到491.2 万t和5 197 亿元,稳居中国茶叶市场第二大产茶品类的地位[6]。我国作为红茶的发源地,生产的红茶种类繁多,主要以滇红、祁红、川红为主要代表[7-8]。
我国西南部的云南省是茶树起源核心区域,孕育了云南大叶种茶树(Camellia sinensis var.assamica)(普洱茶种)。云南大叶种茶树鲜叶具有叶质柔软肥厚、发芽早、育芽力强、生长期长、富含多酚类化合物[表儿茶素没食子酸酯(epicatechin-3-gallate,ECG)、表没食子儿茶素没食子酸酯(epigallocatechin gallate,EGCG)、表儿茶素(epicatechin,EC)、儿茶素(catechin,C)]等特点,所制成的滇红茶具有金毫显露、芽叶肥厚壮实、滋味浓强、汤色红艳、香气馥郁的特征[9-10]。除茶树外,云南还分布有非人工栽培的大厂茶(Camellia tachangensis Zhang)、厚轴茶(Camellia crassicolumna)、大理茶(Camellia taliensis)等的茶组植物[11]。
大理茶主要分布于云南省西部和西南部以及缅甸北部,其鲜叶已按照“绿茶”或“红茶”工艺制作成为“野茶”[12]。例如在云南保山、临沧等地区茶农以大理茶种鲜叶为原料,经萎凋、揉捻、发酵、干燥等加工工艺制成“大理红茶”[13],该茶不仅具有红茶的品质特征,还带有品种的独特滋味和香气。李国萍等[14]研究发现,与采用云南大叶种鲜叶加工而成的红茶相比,大理茶种所制成的红茶具有香气甜香、滋味鲜醇等特征。大理红作为一种茶叶产品,其生化成分与品质特征有待进一步研究。
本文收集5 份云南省临沧凤庆县生产的大理红样品,并以滇红样品为对照,进行感官审评以及水浸出物、茶多酚、咖啡碱(caffeine,CA)、可溶性糖、氨基酸等化学成分测定分析,以期明确大理红的品质特征。
红茶(大理红、滇红):产自云南省临沧市;福林酚:北京索莱宝科技有限公司;蒽酮:国药集团化学试剂有限公司;乙酸乙酯:天津市大茂化学试剂厂;正丁醇:天津市致远化学试剂有限公司;磷酸二氢钾:上海源叶生物科技有限公司;葡萄糖:广东汕头西陇科学股份有限公司;茚三酮:广州科檬生物科技有限公司;磷酸氢钠、氯化亚锡:天津市风船化学试剂科技有限公司;三氯甲烷:重庆川东化工(集团)有限公司;L-谷氨酸:上海埃博商贸有限公司;儿茶素、表儿茶素、没食子儿茶素(gallic catechin,GC)、儿茶素没食子酸酯(catechin gallate,CG)、表没食子酸儿茶素(epigallocatechin,EGC)、表儿茶素没食子酸酯、表没食子儿茶素没食子酸酯、没食子儿茶素没食子酸酯(gallocatechin gallate,GCG)、槲皮素(quercetin)、杨梅素(myricetin)、木犀草素(luteolin)、山奈酚(kaempferol)、没食子酸(gallic acid,GA)、鞣花酸(ellagic acid)、茶碱(theophylline)、咖啡碱标准品(色谱纯,纯度均≥98%):成都曼思特生物科技有限公司。除特殊标注外,所用试剂均为分析纯。
1200 型高效液相色谱仪:美国Agilent 公司;K6600 全波长酶标仪:北京凯奥科技发展有限公司;MOC63U 240V EXP 水分测定仪:日本岛津公司;101-2AB 型电热鼓风干燥箱:天津市泰斯特仪器有限公司;YS6060 型色差仪:深圳市三恩时科技有限公司。
按GB/T 23776—2018《茶叶感官审评方法》进行茶叶审评[15];色差仪测定茶汤色差值;采用水分测定仪测定茶叶含水量;采用恒重法[16]、福林酚法[17]、蒽酮-硫酸法[18]、茚三酮法[19]测定茶叶水浸出物、茶多酚、可溶性糖和游离氨基酸的含量;采用高效液相色谱法[20]测定儿茶素的含量;按NY/T 3675—2020《红茶中茶红素和茶褐素含量的测定分光光度法》[21]测定茶黄素、茶红素、茶褐素的含量。
每个红茶样品分别提取3 次进行测定分析。使用Excel 进行数据的计算、分析和整理;采用SPSS 软件进行两样本成对T 检验,GraphPad prism 9.0.0 软件绘制箱式图。
两种红茶的感官审评结果及两种红茶茶汤色泽指标如表1 和图1 所示。
图1 感官审评照片与茶汤色差值
Fig.1 Photos of sensory evaluation and color difference values of tea infusion
表1 茶样感官审评结果
Table 1 Sensory evaluation of sample tea leaves
样品序号大理红1大理红2大理红3大理红4大理红5滇红1滇红2滇红3滇红4滇红5外形条索紧结,色泽乌黑,尚润,较匀整洁净,略有老梗条索较紧结,色泽乌黑,尚润,欠匀整,较洁净,多黄片条索紧结,色泽乌黑,尚润,较匀整洁净,有老梗条索紧结,色泽乌黑,尚润,匀整,较洁净,有老梗条索较紧结,色泽乌黑,尚润,欠匀整,较洁净,多黄片条索粗壮,色泽乌褐,较润,显毫,较匀整洁净条索粗壮,色泽乌褐,较润,显毫,较匀整洁净条索紧结,色泽乌褐,尚润,有毫,匀整,洁净条索较紧实,色泽乌褐,尚润,有毫,较匀整洁净条索粗壮,色泽乌褐,较润,显毫,洁净汤色橙黄明亮橙红明亮橙黄明亮橙黄明亮橙红明亮红浓明亮红浓明亮红浓明亮红浓明亮红浓明亮香气花香浓郁持久花香浓郁持久花香浓郁持久花香浓郁持久花香纯正悠扬花香纯正悠扬焦糖香浓郁焦糖香浓郁甜香甜香欠醇滋味甜醇甜醇甜醇甜醇甜醇稍酸浓厚浓强浓强浓强稍酸苦涩稍酸叶底红匀,柔软,泛青红匀,柔软,泛青红匀,柔软,泛青红匀,较柔软,泛青红匀,柔软,泛青红匀,柔软红匀,柔软红,柔软,欠匀红,柔软,欠匀红,柔软,欠匀
由表1、图1a 可知,大理红具有外形色泽乌黑、条索紧结,汤色橙红明亮,花香浓郁持久,滋味甜醇,叶底红匀、柔软的特征;滇红具有条索粗壮、色泽乌褐,汤色红浓明亮,甜香,滋味浓强稍酸,叶底红匀、柔软的特征。由图1b 可知,大理红的汤色明亮度L*值(84.00)极显著高于滇红汤色明亮度L*值(75.56)(P<0.01);而红绿度a*值(1.52)与黄蓝度b*值(49.80)极显著低于滇红的a*值(12.05)与b*值(79.31)(P<0.01),该结果与大理红汤色橙红明亮,而滇红汤色红浓明亮结果相符,且与李国萍等[14]的研究结果相似,均显示出大理红茶具有滋味甜醇的特点。综上,大理红的滋味更甜醇。
茶叶中主要的化学成分包括多酚、多糖、氨基酸、生物碱、有机酸等,各类化学成分的组成,构成了茶叶独特的色、香、味品质[22]。游离氨基酸、茶多酚、可溶性糖是红茶的主要化学成分,其含量与红茶的感官品质显著相关[23]。
大理红与滇红中水浸出物、游离氨基酸、茶色素、可溶性糖、茶多酚成分含量如图2 所示。
图2 两组红茶中水浸出物、游离氨基酸、茶色素、可溶性糖、茶多酚成分含量
Fig.2 Component contents of water extract,free amino acid,tea pigments,soluble sugar,and tea polyphenols in two groups of black tea
水浸出物是茶汤中主要的滋味物质之一,其含量与茶叶中可溶性物质的数量密切相关,是影响汤色变化与茶汤滋味浓强度的重要因素[24]。由图2 可知,大理红的水浸出物含量为35.97%,显著低于滇红(39.33%)(P<0.05)。游离氨基酸是茶叶品质的重要评价因子之一,它可使茶叶产生鲜爽味,参与茶叶香气物质的形成反应[25],是滇红茶产生焦糖香味的主要原因之一。大理红的游离氨基酸含量为2.21%,极显著低于滇红(2.65%)(P<0.01),与感官审评滇红滋味更浓强的结果相符。大理红的可溶性糖含量为3.92%,明显高于滇红(3.70%),这可能是造成大理红茶滋味甜醇的原因。
茶多酚是茶汤苦味及涩味的主要来源,由图2 可知,大理红的茶多酚含量为7.11%,极显著低于滇红(11.33%)(P<0.01),其变化趋势与易桂美等[26]发现大理茶种加工红茶的茶多酚、儿茶素含量显著低于云南大叶种加工红茶与古树红茶的结果相符。红茶发酵时,多酚类物质会被进一步氧化缩合生成茶黄素、茶红素和茶褐素类物质,这些有色氧化产物是构成红茶独特品质的重要因素[27]。其中,茶黄素对红茶汤色的明亮度起决定作用,而茶红素是形成红茶汤色红浓度的主要物质,茶褐素则影响着红茶汤色的暗度,含量过多时,会使汤色变得深褐发暗,品质降低[28-29]。由图2可知,滇红的茶红素含量(6.25%)显著高于大理红(5.40%)(P<0.05)、茶黄素含量(0.24%)极显著高于大理红(0.12%)(P<0.01),这可能是大理红汤色橙黄,滇红汤色红浓的主要原因。
儿茶素类化合物是茶树茶多酚的主要组成成分,主要分为非酯型儿茶素和酯型儿茶素两类,其中非酯型儿茶素有C、EC、GC、EGC;酯型儿茶素有CG、ECG、GCG、EGCG[30]。Scharbert 等[31]通过定量、味觉重建和味觉缺失试验对红茶滋味物质进行研究,发现儿茶素类物质有较强的苦涩味和收敛性,其中酯型儿茶素滋味苦涩、抗氧化能力强,而非酯型儿茶素滋味回甘稍甜、涩味较强。大理红与滇红的儿茶素类物质成分含量如图3 所示。
图3 两组红茶中儿茶素类物质成分含量
Fig.3 Component contents of catechins in two groups of black tea
由图3 可知,大理红的非酯型儿茶素的总含量为9.59 mg/g、酯型儿茶素总含量为3.41 mg/g。滇红的非酯型儿茶素的含量为29.02 mg/g、酯型儿茶素含量为6.08 mg/g。滇红的非酯型儿茶素C、GC、EGC 与酯型儿茶素ECG、CG 的含量极显著高于大理红(P<0.01),可能是造成滇红滋味浓强、苦涩,而大理红苦涩味低的主要原因。
黄酮类化合物是茶叶的重要组成成分,赋予了茶叶独特的色泽与滋味,具有重要的抗氧化、抗炎和抗癌特性[32]。黄酮醇会与糖结合形成黄酮苷,是红茶中主要的涩味物质,具有较低的阈值,使茶汤呈现柔和的涩感,对咖啡碱的苦味具有增强效果[33]。在茶叶中发现的黄酮类化合物主要有黄酮醇及其苷类,占茶叶干物质的3%~4%[34]。红茶中山奈酚、杨梅素、芦丁、槲皮素、花旗松素、木犀草素6 种黄酮及黄酮苷类物质含量见图4。
图4 两组红茶中黄酮类物质成分含量
Fig.4 Component contents of flavonoids in two groups of black tea
由图4 可知,大理红中黄酮及黄酮苷类的总含量为1.28 mg/g,滇红中黄酮及黄酮苷类的总含量为3.36 mg/g。其中,滇红中的木犀草素、杨梅素、槲皮素、芦丁含量极显著高于大理红(P<0.01),而花旗松素、山奈酚含量差异不显著(P>0.05)。
茶叶中的生物碱主要有茶叶碱、咖啡碱和可可碱3 种,可可碱和茶叶碱呈苦味,在茶叶中的含量较低[35]。咖啡碱与儿茶素、氨基酸等络合,可使茶汤产生先苦后甘的滋味特征,具有预防糖尿病、心血管疾病、抗癌和改善记忆障碍等生理功能[36]。红茶中酚酸类物质与嘌呤碱类物质成分含量见图5。
图5 两组红茶中酚酸类物质与嘌呤碱类物质成分含量
Fig.5 Component contents of phenolic acids and purine bases in two groups of black tea
由图5 可知,大理红中咖啡碱含量(11.17 mg/g)极显著低于滇红(19.01 mg/g)(P<0.01),与大理红滋味苦度更低的感官审评结果相符。徐亚文等[37]对野生滇红工夫红茶与传统滇红工夫红茶间的品质差异进行研究,发现野生滇红的咖啡碱含量(9.54 mg/g)明显低于传统滇红工夫红茶的咖啡碱含量(14.60 mg/g),其变化趋势与本研究结果相符。茶汤中的酸味物质主要有没食子酸、水溶性有机酸类等[9]。由图5 可知,大理红中没食子酸含量(1.15 mg/g)、鞣花酸含量(0.75 mg/g)极显著低于滇红中没食子酸含量(2.21 mg/g)、鞣花酸含量(1.79 mg/g)(P<0.01),与滇红滋味稍酸的感官审评结果相符。
本研究发现大理红具有汤色橙红明亮、滋味甜醇、花香浓郁的品质特点,滇红具有汤色红浓明亮、滋味浓强、呈甜香或焦糖香的特点。而大理红的水浸出物(35.97%)、游离氨基酸(2.21%)、茶多酚(7.11%)、茶黄素(0.12%)、茶红素(5.40%)、咖啡碱(11.17 mg/g)、没食子酸(1.15 mg/g)、非酯型儿茶素(C、EGC、GC)、酯型儿茶素(ECG、CG)、黄酮及黄酮苷类(槲皮素、芦丁、木犀草素、杨梅素)等物质含量均显著低于滇红(P<0.05,P<0.01)。两种红茶产品间品质差异明显,大理红具有独特的品质风味特征。目前,还没有茶树近缘物种鲜叶加工成茶叶的标准,大理茶多冠以“野茶”的名称,作为农产品销售。未来,应系统开展安全性评估与成分分析等研究,以推动云南大理茶、大厂茶等茶树近缘物种鲜叶加工的产品的规范化发展。
[1] XI S Q,CHU H Y,ZHOU Z J,et al.Effect of potassium fertilizer on tea yield and quality: A meta-analysis[J]. European Journal of Agronomy,2023,144:126767.
[2] AHAMMED G J, LI X. Hormonal regulation of health-promoting compounds in tea (Camellia sinensis L.)[J]. Plant Physiology and Biochemistry:PPB,2022,185:390-400.
[3] NING J M, LI D X, LUO X, et al. Stepwise identification of six tea(Camellia sinensis L.) categories based on catechins, caffeine, and theanine contents combined with fisher discriminant analysis[J].Food Analytical Methods,2016,9(11):3242-3250.
[4] MENG J M, CAO S Y, WEI X L, et al. Effects and mechanisms of tea for the prevention and management of diabetes mellitus and diabetic complications: An updated review[J]. Antioxidants, 2019, 8(6):170.
[5] 李琛,岳翠男,杨普香,等.工夫红茶特征香气研究进展[J].食品安全质量检测学报,2021,12(22):8834-8842.LI Chen,YUE Cuinan,YANG Puxiang,et al.Research progress on characteristic aroma of Congou black tea[J]. Journal of Food Safety&Quality,2021,12(22):8834-8842.
[6] WANG L L,XIE J L,MIAO Y W,et al.Exploration of the effects of geographical regions on the volatile and non-volatile metabolites of black tea utilizing multiple intelligent sensory technologies and untargeted metabolomics analysis[J]. Food Chemistry: X, 2024, 23:101634.
[7] WANG Y J, LI T H, LI L Q, et al. Evaluating taste-related attributes of black tea by micro-NIRS[J]. Journal of Food Engineering,2021,290:110181.
[8] REN G X, NING J M, ZHANG Z Z. Multi-variable selection strategy based on near-infrared spectra for the rapid description of Dianhong black tea quality[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy,2021,245:118918.
[9] 宛晓春.茶叶生物化学:面向21 世纪课程教材茶学专业用[M].第3 版.北京:中国农业出版社,2007.WAN Xiaochun. Tea biochemistry: A curriculum textbook for tea science in the 21st century[M]3th. Beijing: China Agriculture Press,2007.
[10] 王近近,滑金杰,江用文,等.云南大叶种茶鲜叶原料的物化特性比较[J].食品研究与开发,2022,43(22):58-70.WANG Jinjin, HUA Jinjie, JIANG Yongwen, et al. Comparison of physicochemical properties of fresh leaves among large-leaf tea cultivars in Yunnan[J]. Food Research and Development, 2022, 43(22):58-70.
[11] 孙雪梅,黄玫,刘本英,等.云南野生茶树的地理分布及形态多样性[J].中国农学通报,2012,28(25):277-288.SUN Xuemei, HUANG Mei, LIU Benying, et al. Geographic distribution and morphological diversity of wild tea germplasms from Yunnan[J]. Chinese Agricultural Science Bulletin, 2012, 28(25):277-288.
[12] PIRBALOUTI A G, MOHAMADPOOR H, BAJALAN I, et al.Chemical compositions and antioxidant activity of essential oils from inflorescences of two landraces of hyssop[Hyssopus officinalis L. subsp. angustifolius (bieb.)] cultivated in southwestern, Iran[J].Journal of Essential Oil Bearing Plants,2019,22(4):1074-1081.
[13] 范捷,王秋霜,秦丹丹,等.红茶品质及其相关生化因子研究进展[J].食品科学,2020,41(3):246-253.FAN Jie, WANG Qiushuang, QIN Dandan, et al. Recent progress in black tea quality and related biochemical factors[J]. Food Science,2020,41(3):246-253.
[14] 李国萍,李家锋,朱海燕.盈江大理茶种与凤庆大叶种芽茶香气差异分析[J].食品工业科技,2024,45(5):281-291.LI Guoping,LI Jiafeng,ZHU Haiyan.Analysis of aroma differences between Yingjiang Camellia taliensis and Fengqing large-leaved species bud tea[J].Science and Technology of Food Industry,2024,45(5):281-291.
[15] 国家质量监督检验检疫总局,中国国家标准化管理委员会.茶叶感官审评方法: GB/T 23776—2018[S]. 北京: 中国标准出版社,2018.General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Standardization Administration of the People′s Republic of China. Methodology for sensory evaluation of tea: GB/T 23776—2018[S]. Beijing: Standards Press of China,2018.
[16] 国家质量监督检验检疫总局,中国国家标准化管理委员会.茶水浸出物测定: GB/T 8305—2013[S]. 北京: 中国标准出版社,2014.General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Standardization Administration of the People′s Republic of China. Tea Determination of water extracts content: GB/T 8305—2013[S]. Beijing: Standards Press of China,2014.
[17] 国家市场监督管理总局,国家标准化管理委员会.茶叶中茶多酚和儿茶素类含量的检测方法: GB/T 8313—2018[S]. 北京: 中国标准出版社,2018.State Administration for Market Regulation, Standardization Administration of the People′s Republic of China.Determination of total polyphenols and catechins content in tea: GB/T 8313—2018[S].Beijing:Standards Press of China,2018.
[18] 傅博强,谢明勇,聂少平,等.茶叶中多糖含量的测定[J].食品科学,2001,22(11):69-73.FU Boqiang, XIE Mingyong, NIE Shaoping, et al. Method simplified in assaying tea polysaccharide[J]. Food Science, 2001, 22(11):69-73.
[19] 国家质量监督检验检疫总局,中国国家标准化管理委员会.茶游离氨基酸总量的测定: GB/T 8314—2013[S]. 北京: 中国标准出版社,2014.General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Standardization Administration of the People′s Republic of China. Tea Determination of free amino acids content: GB/T 8314—2013[S]. Beijing: Standards Press of China,2014.
[20] NIAN B,CHEN L J,YI C,et al.A high performance liquid chromatography method for simultaneous detection of 20 bioactive components in tea extracts[J].Electrophoresis,2019,40(21):2837-2844.
[21] 中华人民共和国农业农村部.红茶中茶红素和茶褐素含量的测定 分光光度法: NY/T 3675—2020[S]. 北京: 中国农业出版社,2021.Ministry of Agriculture and Rural Affairs of the People′s Republic of China. Determination of thearubigins and theaflavins content in black tea Spectrophotometric method: NY/T 3675—2020[S]. Beijing:China Agriculture Press,2021.
[22] 张文娟,刘雪娜,李丽维,等.茶多酚生理机制及其保健食品研发进展[J].食品研究与开发,2023,44(5):217-224.ZHANG Wenjuan,LIU Xuena,LI Liwei,et al.Physiological mechanism of tea polyphenols and development of their health food[J].Food Research and Development,2023,44(5):217-224.
[23] 吴英. 万州燕山红茶鲜叶产量及品质动态变化研究[D]. 重庆:重庆三峡学院,2021.WU Ying.Study on the dynamic changes of yield and quality of fresh leaves of Yanshan black tea in Wanzhou[D]. Chongqing:Chongqing Three Gorges University,2021.
[24] 李芬,陈春林,田玉萍,等.云南不同品种大叶种茶树生化成分季节变化特征分析[J].食品与生物技术学报,2022,41(3):88-95.LI Fen, CHEN Chunlin, TIAN Yuping, et al. Seasonal variation of biochemical components of different cultivars of Camellia sinensis var. assamica in Yunnan[J]. Journal of Food Science and Biotechnology,2022,41(3):88-95.
[25] 方仕茂,张拓,杨婷,等.基于HPLC-FLD 靶向分析古茶树游离氨基酸积累特征[J].江苏农业学报,2022,38(4):1070-1077.FANG Shimao, ZHANG Tuo, YANG Ting, et al. Targeted analysis of free amino acid accumulation characteristics of ancient tea trees based on HPLC-FLD[J]. Jiangsu Journal of Agricultural Sciences,2022,38(4):1070-1077.
[26] 易桂美,毛鸿霖,李佳乾,等.不同原料滇红工夫红茶品质特征差异分析[J].中国茶叶,2023,45(6):60-66.YI Guimei, MAO Honglin, LI Jiaqian, et al. Analysis on the difference of quality characteristics of Dianhong congou black tea processed with different raw materials[J]. China Tea, 2023, 45(6): 60-66.
[27] HUA J J, XU Q, YUAN H B, et al. Effects of novel fermentation method on the biochemical components change and quality formation of Congou black tea[J].Journal of Food Composition and Analysis,2021,96:103751.
[28] BHUYAN L P, BORAH P, SABHAPONDIT S, et al. Spatial variability of theaflavins and thearubigins fractions and their impact on black tea quality[J].Journal of Food Science and Technology,2015,52(12):7984-7993.
[29] TAKEMOTO M, TAKEMOTO H. Synthesis of theaflavins and their functions[J].Molecules,2018,23(4):918.
[30] 杨春,陈正武,乔大河,等.115 份贵州茶树种质茶多酚及儿茶素多样性分析及特异种质筛选[J].西北农业学报,2022,31(11):1470-1480.YANG Chun, CHEN Zhengwu, QIAO Dahe, et al. Diversity analysis of tea polyphenols and catechins of 115 tea plant germplasms in Guizhou and its screening of specific resources[J]. Acta Agriculturae Boreali-occidentalis Sinica,2022,31(11):1470-1480.
[31] SCHARBERT S, HOFMANN T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments[J]. Journal of Agricultural and Food Chemistry,2005,53(13):5377-5384.
[32] HE H F,WEI K,YIN J F,et al.Insight into tea flavonoids:Composition and chemistry[J]. Food Reviews International, 2021, 37(8):812-823.
[33] JOSHI R,GULATI A.Fractionation and identification of minor and aroma-active constituents in Kangra orthodox black tea[J]. Food Chemistry,2015,167:290-298.
[34] BAG S,MONDAL A,MAJUMDER A,et al.Tea and its phytochemicals: Hidden health benefits & modulation of signaling cascade by phytochemicals[J].Food Chemistry,2022,371:131098.
[35] NHU-TRANG T T,NGUYEN Q D,CONG-HAU N,et al.Characteristics and relationships between total polyphenol and flavonoid contents, antioxidant capacities, and the content of caffeine, gallic acid, and major catechins in wild/ancient and cultivated teas in Vietnam[J].Molecules,2023,28(8):3470.
[36] ZHU Q F, LIU L J, LU X F, et al. The biosynthesis of EGCG, theanine and caffeine in response to temperature is mediated by hormone signal transduction factors in tea plant (Camellia sinensis L.)[J].Frontiers in Plant Science,2023,14:1149182.
[37] 徐亚文,牛淼,刘娜,等.传统滇红工夫红茶与野生滇红工夫红茶的品质分析[J].食品工业科技,2023,44(6):335-344.XU Yawen, NIU Miao, LIU Na, et al. Quality analysis of traditional and wild Yunnan congou black tea[J]. Science and Technology of Food Industry,2023,44(6):335-344.
Quality Analysis of Black Tea Made from Camellia taliensis Fresh Leaves
沙艮,张田芳,陈秋月,等.大理茶鲜叶制成红茶的品质分析[J].食品研究与开发,2024,45(23):18-24.
SHA Gen,ZHANG Tianfang,CHEN Qiuyue,et al. Quality Analysis of Black Tea Made from Camellia taliensis Fresh Leaves[J].Food Research and Development,2024,45(23):18-24.