多糖是一类由10个以上的单糖通过糖苷键连接而成的生物大分子,分子量可达到数万甚至数百万Da[1]。天然多糖采用热水浸提法、碱提取法和发酵法等方法[2],主要来源于植物、真菌和细菌的细胞壁或细胞膜[3]。近年来,多糖因具有抗氧化、抗肿瘤、保肝、降血糖、抑菌、消炎、抗病毒和免疫调节等多种生物活性,在食品、生物医药等领域日益引起人们的广泛关注[4]。
研究表明,多糖的化学成分、结构和构象在很大程度上决定其生物活性[5-6]。然而,许多天然多糖不具备或仅表现出一定的生物活性。因此,对多糖分子进行修饰改变其结构和构象进而增强其生物活性尤为重要。目前,常见的多糖化学修饰的方法有硫酸化、磷酸化、羧甲基化、乙酰化、甲基化和硒化等。研究表明,化学修饰能够改善多糖的生物活性,扩大其应用范围[7],成为多糖功能活性领域的研究热点。
本文综述了近年来多糖化学修饰的方法、结构表征及其对生物活性的影响,为多糖的功能活性研究和应用提供一定的参考。
化学修饰是指运用化学手段对多糖结构进行修饰,通过引入不同的活性基团来获得具有不同生物活性的多糖衍生物,其修饰的对象通常为提纯后的粗多糖[8]。目前常采用的方法为硫酸化、羧甲基化、乙酰化、硒化和磷酸化修饰。化学修饰会使原多糖的羟基替换成硫酸基团、羧甲基、乙酰基、硒酯基或磷酸基团等目标基团,单糖构成比例、分子量和形貌特征等也随之改变。
硫酸化修饰是指将硫酸基团引入到多糖链的某些羟基上,该方法能够改变多糖的水溶性和生物活性,广泛应用于多糖分子的改性中[9],反应如图1[10]所示。常见的修饰方法有氯磺酸-吡啶法、浓硫酸法和三氧化硫-吡啶法。其中,氯磺酸-吡啶法具有较高的取代度(degree of substitution,DS)和产率,回收方便等优点,是制备硫酸化多糖最常见的方法。Xu等[11]对硫酸化改性的迷果芹多糖进行研究,根据响应面试验结果、实际生产情况和操作的方便性采用以下条件:氯磺酸(chlorosulfonic acid,CSA)与吡啶(pyridine,Pyr)体积比为1.3∶1,反应持续时间为3.4 h,以及反应温度为65℃,DS为0.99。Xiao等[12]在浓硫酸和正丁醇体积比为3∶1时,成功制备了硫酸化牡丹籽粕多糖,且具有较强抗氧化能力。Guo等[13]采用三氧化硫-吡啶法对青稞 β-葡聚糖(tibetan hulless barley,THB)硫酸化修饰,通过响应面法研究最佳反应条件,结果表明当SO3-Pyr与THB之比为16.88 g/g,反应时间为2.03 h,反应温度为57.54℃时,最佳DS为0.59。傅里叶变换红外光谱(Fourier-transform infrared spectroscopy,FTIR)和紫外光谱可以对硫酸化多糖进行定性分析。FTIR表明,硫酸化改性后会在1 260 cm-1(S-O)附近、820 cm-1(C-O-S)附近和588 cm-1(O-S-O)附近出现3个新的吸收峰[14]。紫外光谱中218、264、268、286 nm处的吸收峰也表明-S-O-和-SO2的存在,证明羟基转化为-OSO3H基团[15]。而核磁共振(nuclear magnetic resonance,NMR)谱可以对修饰后多糖的酯化位置做出准确判断。硫酸化南瓜多糖13CNMR表明,由于硫酸基团的引入产生了多个新的共振峰,其中C6和C1向高场移动,DS越高,吸引电子的能力越强,碳原子发生的化学位移越明显[16]。同时,扫描电镜(scanning electron microscopy,SEM)下观察到仙草多糖呈片状,表面光滑,而修饰后有许多类孔结构,形态更加分散,呈现卷曲状态[17]。
图1 多糖的硫酸化修饰反应示意图
Fig.1 Schematic diagram of sulfated modification of polysaccharides
羧甲基化修饰法是指将多糖残基上的某些羟基替换成羧甲基,多糖的羧甲基化修饰反应示意图见图2[10]。经羧甲基修饰后,原多糖的构象发生改变,水溶性和生物活性得以提高[18]。主要方法有溶媒法和水媒法。
水媒法有多种副作用,醚化剂利用率低,后处理困难等缺点,应用较少。溶媒法反应均匀,传热传质快,副反应少,较广泛地应用于羧甲基改性。主要方法为多糖粉末悬浮于有机溶剂中,碱性条件下与氯乙酸发生醚化反应[19]。C.Muthukumaran等[20]采用响应面试验对果胶的羧甲基化反应条件进行优化,结果表明,乙醇浓度80%、NaOH浓度38%、氯乙酸(chloroacetic acid,CAA)浓度8.5%、时间60 min下DS最大值为0.496。羧甲基修饰同样会改变多糖的结构特性,FTIR谱中在1 600、1 420、1 330 cm-1附近出现了强吸收峰,证明-COO的存在[21]。大蒜多糖NMR显示,由于羧基中C=O和-CH2COO-中亚甲基的振动,化学位移在177.73和70.23处,会导致出现新峰[22]。
图2 多糖的羧甲基化修饰反应示意图
Fig.2 Schematic diagram of carboxymethylation modification of polysaccharides
乙酰化修饰将多糖支链上的羟基酯化成乙酰基,导致多糖链的空间排列改变,致使更多的羟基暴露[23],因此,可以显著改善多糖的水溶性和疏水性[24]。多糖的乙酰化修饰反应示意图见图3[10]。
图3 多糖的乙酰化修饰反应示意图
Fig.3 Schematic diagram of acetylation modification of polysaccharides
乙酸酐-吡啶法以甲酰胺、甲醇、二甲基亚砜(dimethyl sulfoxide,DMSO)等作为反应溶剂,乙酸酐和乙酸为乙酰化试剂,吡啶、4-二甲基氨基吡啶(4-dimethylaminopyridine,DMAP)和N-溴代丁二酰亚胺(N-bromosuccinimide,NBS)为催化剂[25-26]。王警等[27]从龙眼中通过水提醇沉法提取多糖,经响应面试验优化乙酰化修饰工艺条件:乙酸酐-多糖比为10.2∶1、反应温度42℃、反应时间30 min,DS为0.443。随着乙酰基的引入,多糖的FT-IR谱、NMR谱和SEM等发生改变,1 745 cm-1附近C=O伸缩振动、1 238 cm-1附近CO-C伸缩振动和1 375 cm-1附近—CH3对称伸缩振动明显增强,且DS越高,振动越强 [28]。与苦瓜多糖13CNMR相比,由于乙酰基取代了糖环的某些位置,对多糖糖环的碳原子产生了新的影响,因此化学位移在177.48、124.6、65.90 和 50.27 处出现新的共振峰[29]。蛹虫草多糖呈现片状或链状,而修饰后多糖出现了大量密集的粒状团聚体[30]。
硒化修饰是指将硒引入多糖并增强其生物活性的一种有效方法。硒化多糖能发挥多糖和硒的多重功效,其活性远高于硒或多糖,更有利于机体吸收利用[31]。多糖的硒化修饰反应示意图见图4[32]。
图4 多糖的硒化修饰反应示意图
Fig.4 Schematic diagram of selenylation modification of polysaccharides
硒化多糖的方法有:硝酸-亚硒酸钠(nitric acid sodium selenite,NA-SS)、硝酸-硒酸(nitric acid-selenous acid,NA-SA)、冰醋酸-硒酸(glacial acetic acidselenous acid,GA-SA)、冰醋酸亚硒酸钠(glacial acetic acid sodium selenite,GA-SS)和氧氯化硒(selenium oxychloride,SOC)[33]。其中,氧氯化硒法的硒化试剂制备困难,且硒化过程中会释放大量有毒气体,应用受限。而NA-SS法反应条件简单、硒化效率高,常被用来进行硒化修饰。Gao等[33]分别采用NA-SS、NA-SA、GA-SA和GA-SS方法制备硒化大蒜多糖,其中NA-SS法硒化效率最高。Chen等[34]用NA-SS法得到了含硒量为478.17 μg/g的硒化党参果胶多糖,体外实验证明硒化修饰可显著提高原多糖的抗肿瘤活性。硒化修饰过程中,Na2SeO3优先与半缩醛羟基C6-OH反应,Se主要以Se酯的形式存在。FTIR光谱中,600 cm-1~700 cm-1和850 cm-1~900 cm-1处的两个新的吸收峰分别对应C-O-Se不对称伸缩振动和Se=O不对称伸缩振动[35]。但少数情况下,会在600 cm-1~700 cm-1(O-Se-C)和1 010 cm-1~1 040 cm-1(O-Se-O)附近出现新的吸收峰[33,36]。13C NMR谱图表明,硒化修饰粒毛盘胞外多糖在62.54 ppm处出现新峰,表明是O-6取代碳,在O-6处发生反应,同时,硒化多糖中C-6峰仍然存在,表明在C-2、C-3位置上的OH基团并未被硒化[37]。同时,硒化修饰也会改变多糖表面形貌。比如,马尾藻多糖有许多片状结构,外观粗糙,而修饰后产生许多不规则小孔[38]。百合多糖表面有很多小凸起,而硒化后呈片状或碎片状堆积,表面形貌光滑[36]。
磷酸化修饰是指多糖中的羟基被磷酸基团取代,由于带电磷酸基团的引入,多糖的某些活性发生改变,水溶性增强[39]。多糖的硒化修饰反应示意图见图5[16]。
图5 多糖的硒化修饰反应示意图
Fig.5 Schematic diagram of phosphorylation modification of polysaccharides
常采用磷酸及其酸酐、三氯氧磷和磷酸盐进行磷酸化修饰[39-41]。Deng等[39]将竹荪多糖溶于含有尿素的DMSO中,与磷酸溶液反应得到白色磷酸化多糖,产率为24.8%。Chen等[41]用POCl3-吡啶法对南瓜多糖进行了修饰,通过改变反应温度和POCl3的量,分别获得了DS为0.01和0.02磷酸化南瓜多糖,整个过程多糖未发生明显降解。Jiang等[42]以孔石莼多糖为对象,采用三聚磷酸钠和三偏磷酸钠为磷酸化试剂,修饰后磷含量可达10.47%。磷酸基团引入后,FT-IR谱中会出现两个新的吸收峰,分别为C-O-P在1 000 cm-1~800 cm-1范围内对称伸缩振动和P=O在1 300 cm-1~1 200 cm-1范围内不对称伸缩振动[43]。磷酸化大蒜多糖的13C NMR中发现70 ppm~80 ppm分裂出新峰,说明反应在C2、C3、C5;同时,31P NMR中也出现了3个新峰,说明多糖中3个不同位置的羟基被磷酸基团取代[44]。磷酸化修饰同样会改变多糖表面形貌。如,党参多糖修饰前表面光滑,有不规则和交错的条纹,而修饰后表面粗糙不平,且有很多凸起的球体[45]。
羟丙基化修饰是指将多糖链上的羟基取代为羟丙基,具有简单、低成本、无毒等优点[46]。Liu等[47]以环氧丙烷为试剂,制备了羟丙基灵芝多糖,可显著提高多糖的水溶性和抗氧化活性。磺酰化修饰是指将多糖上的某些羟基被磺酰基取代。张强[48]以茯苓多糖为原材料,苯磺酰氯为磺酰化试剂,DMSO为溶剂,磺酰化衍生物得率为42%,具且有较好的自由基清除能力。
化学修饰可以改善原多糖的生物活性。但往往由于在水溶性、分子量(molecular weight,Mw)、DS、糖醛酸含量、主链的糖苷分支和构象存在差异,其衍生物的生物活性不同[49]。迄今为止,多糖结构与生物活性关系的报道较少。由于结构的复杂性和生物活性的多样性,化学修饰多糖的构效关系研究仍然面临着巨大的挑战。不同化学修饰方法后多糖的生物活性变化见表1。
表1 不同化学修饰方法后多糖的生物活性变化
Table 1 Biological activity changes of polysaccharides after different chemical modification
化学修饰方法 结构和生物活性的构效关系 参考文献硫酸化修饰 Ds和Mw影响硫酸化衍生物抗氧化活性;适当的Ds不会破坏原多糖的三螺旋结构,抗凝血和抑菌活性增强;免疫调节活性和抗肿瘤活性因Ds不同而不同[14,50-52]羧甲基化修饰 修饰后糖含量的增加导致抗氧化活性增强;DS和Mw越高,降血糖活性越强;具有适当DS和稳定三螺旋结构的衍生物抑菌活性更强[18,53,54]硒化修饰 硒在增强抗氧化和抗肿瘤活性上发挥着重要作用;免疫调节活性与硒含量和碳水化合物含量比例有关[36,38,55]乙酰化修饰 DS较低的衍生物抗氧化活性更强;抗肿瘤、免疫调节、消炎和抗溃疡等活性也随着乙酰基引入而增强[24,56-59]磷酸化修饰 磷酸基团引入后多糖水溶性和链的刚度增强导致抗肿瘤活性增强;修饰后总糖含量的减少导致还原能力降低[39,41]
多糖的组成、Mw、糖醛酸和蛋白质含量等都可以影响多糖的抗氧化活性[60]。马尾藻多糖硫酸化后可显著提高原多糖自由基清除活性,且在低DS和Mw时清除活性最强[39]。与迷果芹多糖相比,其硫酸化衍生物Mw较低且部分羟基被取代成-OSO3H,在DPPH自由基、羟基自由基、超氧自由基和还原力测定中表现出较好的抗氧化活性[11]。而多糖具有较高的糖醛酸或蛋白质含量更容易贡献出氢原子,具有更好的抗氧化活性[61]。马尾藻多糖及其硒化衍生物具有相似的半乳糖醛酸和葡萄糖醛酸含量,但硒化衍生物具有更强的抗氧化活性,说明硒在提高抗氧化活性方面发挥了关键的作用[40]。大蒜多糖经羧甲基修饰后,由于糖含量的增加,表现出更强的DPPH自由基和超氧自由基清除活性[22]。乙酰基的存在导致-OH键解离能较弱,致使乙酰化多糖向超氧阴离子提供氢的能力更强。通过DPPH自由基和β-胡萝卜素-亚油酸模型体系对乙酰化青钱柳多糖进行抗氧化活性评价,发现低DS的衍生物两种自由基清除活性最高,分别达到了(93.55±1.82)%和(74.20±3.62)%[24]。南瓜多糖磷酸化后表现出较强的羟基自由基和超氧自由基清除活性,由于还原能力与糖含量有关,修饰后总糖含量下降,因而还原能力降低[41]。
免疫活性是机体抵抗病原体的一种特性,巨噬细胞存在于机体的各个组织中,发挥着重要作用[62]。硫酸化和乙酰化青钱柳多糖对小鼠单核巨噬细胞白血病细胞(RAW264.7)的增殖有明显的促进作用,吞噬活性和细胞因子TNF-a、IL-1β和IL-6水平均增强[63-64]。硫酸化青钱柳多糖免疫活性因DS不同而有所差异,0.45 DS的硫酸化衍生物主要促进T淋巴细胞的增殖,而0.15 DS主要促进B淋巴细胞的增殖[52]。硒化多糖的免疫增强活性与其硒含量和碳水化合物含量比例有关,具有适当比例的硒化百合多糖促进淋巴细胞增殖,提高 IL-2、IL-6、IFN-γ 的含量和血清抗体滴度[36]。茯苓多糖羧甲基修饰后,可以促进RAW264.7细胞NO释放和细胞因子分泌[65]。免疫抑制也是一种常见的现象,化学修饰多糖可作为免疫调节剂,增强机体免疫力。磷酸化川牛膝根多糖显著增加了血清免疫球蛋白浓度,促进脾细胞增殖和腹腔巨噬细胞吞噬作用,增加T细胞亚群比例,可有效克服环磷酰胺诱导的免疫抑制[66]。
大量研究表明,多糖及其衍生物通过诱导细胞凋亡和阻断细胞周期直接抑制或杀死肿瘤细胞[58,65]。落叶松阿拉伯半乳聚糖经硫酸化修饰后,DS为0.8的衍生物对HepG-2细胞抑制效果最强,DS为0.72的衍生物对A549和MCF-7细胞抑制作用最好,表明适当的硫酸化DS可以提高多糖的体外抗肿瘤活性[51]。竹荪多糖无抑制肿瘤细胞生长作用,引入磷酸基团后对MCF-7和B16细胞表现出明显的抑制作用[39]。乙酰化麦冬半乳聚糖可以诱导胰腺癌细胞凋亡,抑制BxPC-3和PANC-1细胞增殖[58]。嗜酸乳杆菌肽聚糖及硒化衍生物均可抑制HT-29细胞增殖,且硒化衍生物抑制和诱导凋亡的能力更强,说明硒在增强多糖抗肿瘤活性上发挥着重要意义[67]。羧甲基化茯苓多糖能有效抑制HT-29和SGC-7901细胞增殖,抑制率可分别达到84%和96%[65]。机体的氧化状态和免疫状态与肿瘤的发生也密切相关。多糖及其衍生物能清除体内的多余的自由基,避免核酸损伤,有效抑制肿瘤细胞的增殖[67]。引入带负电荷的磷酸基团可以与免疫细胞表面的受体高度结合并有效激活免疫应答,从而使磷酸化多糖产生抗肿瘤活性[68]。羧甲基和硫酸基团通过静电和氢键作用与免疫细胞受体结合,增强免疫反应,抑制肿瘤细胞增殖[69]。同时,抑制肿瘤组织血管的生成也是多糖及其衍生物发挥抗肿瘤活性的重要途径。硫酸化茶藨子木层孔菌葡聚糖能显著降低肿瘤组织中微血管密度的平均数量,抑制血管内皮生长因子的表达,表现出很好的抗肿瘤活性[55]。
目前市面上降血糖的药物虽具有很好的效果,但价格偏高,且副作用大,因此急需开发有效无毒的新型药物[70]。研究表明,链脲佐菌素诱导的糖尿病小鼠体内注射硒化苦瓜多糖能显著提高自身体重和胰岛素水平,降低空腹血糖水平,同时可显著提高糖尿病小鼠体内谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px),超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)中丙二醛(malondialdehyde,MDA)、甘油三酯(triglycerides,TG)和胆固醇(cholesterol,CHO)水平,预防细胞损伤[71]。
抑制α-淀粉酶和α-葡萄糖苷酶两种消化酶的活性可有效降低血糖水平,是治疗II型糖尿病的有效方式。硒化和硫酸化马尾藻多糖对α-葡萄糖苷酶抑制活性高于原多糖,且硫酸化衍生物DS越高,对IRHepG2细胞中葡萄糖消耗促进作用越强[14,39]。粒毛盘菌胞外多糖经硫酸化和羧甲基化修饰后,对α-葡萄糖苷酶和α-淀粉酶抑制活性显著增强,有效抑制葡萄糖的扩散,同时,羧甲基衍生物的DS和Mw越高,降血糖活性越强[53]。
据报道,硫酸化多糖具有抗凝血和抗血栓作用,且无毒无害[50]。除高硫酸酯含量外,与目前常见的抗凝剂肝素没有结构上的同源性[72]。强负电荷的硫酸基团可以与凝血因子上带正电荷的氨基酸残基作用,且高DS的硫酸化多糖可以增加负电荷密度,使其中和更多的氨基酸残基,表现出更强的抗凝血活性[73]。但过高的DS可能破坏某些原多糖的三螺旋结构,进而削弱其抗凝血活性,表明DS是影响抗凝血活性的重要参数[50]。此外,Mw和链构象等对抗凝血活性也有影响[74]。同时,磷酸化和羧甲基化多糖也是一种潜在的抗凝血药物[75]。与金乌贼墨汁多糖相比,羧甲基化和磷酸化衍生物表现出更强的抗凝血活性,且羧甲基衍生物在延长凝血活酶时间(partial thromboplastin time,APTT)和凝血酶时间(thrombin time,TT)方面比磷酸化衍生物更有效[75]。
天然多糖活性较弱或不具有抗病毒活性,而化学修饰后可显著提高其抗病毒活性[76]。硫酸化修饰麦冬多糖能显著提高新城疫病毒(newcastle disease virus,NDV)感染鸡胚成纤维细胞的抗病毒能力。硫酸基团是一种多聚阴离子,研究发现不同的添加方式对其抗病毒效果产生不同影响。在预先加入多糖的模式下,硫酸多糖的聚阴离子可以与受体细胞表面正电荷结合,干扰病毒吸附;在后添加多糖模式下,聚阴离子可以阻断病毒蛋白的合成,影响病毒表达时的跨膜和细胞内信号转导;在同时添加混合后的病毒和多糖模式下,聚阴离子可以直接杀死病毒或与病毒分子结合,从而阻碍病毒的吸附或抑制病毒的逆转录酶[77]。磷酸化党参多糖增加了鸭肝炎病毒(duck hepatitis virus,DHV)组织半数感染量(tissue culture infective dose,TCID50),抑制了病毒的复制,增加了感染DHV-1病毒的鸭胚胎肝细胞的存活率,抗DHAV病毒活性远高于原多糖[45]。同时,研究表明磷酸化川牛膝多糖的抗病毒活性与其磷酸基团含量有关[43]。
多糖具有延缓油脂氧化和抑制微生物的腐败的作用,可有效地控制食品的品质。牡丹籽粕多糖及其硫酸化、羧甲基化和磷酸化衍生物均能抑制鼠伤寒沙门氏菌的生长,其中硫酸化和羧甲基化衍生物表现出更强的抑菌能力[78]。具有适当DS和稳定三螺旋结构的羧甲基化梭柄松苞菇多糖对大肠杆菌、伤寒沙门氏菌、金黄色葡萄球菌和枯草芽孢杆菌均表现出良好的抑制作用[18]。浒苔降解多糖经硒化修饰后,对大肠杆菌、枯草杆菌、沙门氏菌和苹果炭疽菌均具有显著的抑制作用,具有较好的抗真菌和细菌活性[79]。
衰老是机体组织和器官随年龄增加而发生不可逆退化的过程,而多糖对延缓衰老具有重要作用。瓜萎皮多糖及其磷酸化衍生物能显著提高D-gal诱导衰老小鼠体重、脾脏指数和胸腺指数,诱导肝脏、大脑和血清中SOD、CAT、GSH-Px活性增强,抑制MDA积累,其中磷酸化衍生物表现出更强的抗衰老活性[40]。硫酸化金针菇多糖和乙酰化红平菇菌丝多糖通过提高抗氧化酶活性、降低脂质过氧化,缓解肝、肾和脑的损伤,表现出较强的抗衰老能力[59,80]。
化学修饰多糖还具有降血脂、保肝、消炎和抗溃疡等功效。磷酸化孔石莼多糖和硒化粒毛盘菌多糖可以显著增加高血脂症小鼠体内抗氧化酶活性和高密度脂蛋白含量,降低总胆固醇(total cholesterol,TCHO)、甘油三酯(triglycerides,TG)、低密度脂蛋白(low density lipoprotein cholesterol,LDL-C)含量,增强降血脂活性[34,42]。羧甲基羊肚菌多糖通过上调大鼠肝脏蛋白胆固醇7α-羟化酶和低密度脂蛋白受体的表达,降低3-羟基-3-甲基戊二酸单酰辅酶A还原酶的表达,增强其降低胆固醇的能力[81]。硫酸化长牡蛎多糖降低血清中T-CHO、LDL-C、总胆红素(total bilirubin,TBIL),天冬氨酸转氨酶(aspartate aminotransferase,AST)和丙氨酸转氨酶(alanine aminotransferase,ALT)水平,改善机体氨基酸代谢、氧化应激和免疫应答等代谢途径,有效减轻酒精性肝损伤[82]。硒化当归多糖降低血清中ALT、AST、碱性磷酸酶(alkaline phosphatase,ALP)和肝组织匀浆中MDA、ROS含量,抑制p-ERK、p-JNK、p-p38蛋白表达,有效缓解CCl4诱导的肝损伤[83]。Cyrtopodium andersonii R.Br.分离出的葡甘露聚糖经乙酰化修饰,可控制炎症的初始阶段,干扰溃疡形成机制,具有消炎和抗溃疡作用[56]。此外,羧甲基粒毛盘胞外菌和硒化红芪根多糖还分别具有抗疲劳和神经保护功效[84-85]。
化学修饰多糖具有安全性、生物相容性好和稳定性高等优势,可用于膳食补充剂、免疫增强剂和辅助药物等。化学修饰可有效增强多糖的生物学特性。但是,化学修饰多糖的研究有以下不足之处:(1)天然多糖修饰后的毒性评价研究较少,系统研究修饰前后多糖的毒理学特性是亟待解决的一个问题;(2)多糖来源丰富且结构复杂,对生物活性的研究仅停留于表面,作用机制有待进一步阐明;(3)化学修饰多糖的生物活性与其分子结构和理化性质密切相关,而功能与活性之间的构效关系明显研究不足,有待进一步揭示;(4)不同的化学改性方法和条件,会生成不同的产物,目前多糖的修饰方法存在一定的局限性,研究人员需要不断改进修饰方法,获得理想的修饰产物。随着核磁、电镜等科学技术的不断发展,能更准确高效表征出多糖的修饰位置及变化,修饰方法和结构与活性的构效关系将会得到进一步阐释,必定会开发出更多的功能性多糖应用于各个领域。
[1]Xie J H,Tang W,Jin M L,et al.Recent advances in bioactive polysaccharides from Lycium barbarum L.,Zizyphus jujuba Mill,Plantago spp.,and Morus spp.:Structures and functionalities[J].Food Hydrocolloids,2016,60:148-160.
[2]Sun Y J,Hou S T,Song S,et al.Impact of acidic,water and alkaline extraction on structural features,antioxidant activities of Laminaria japonica polysaccharides[J].International Journal of Biological Macromolecules,2018,112:985-995.
[3]Zhang F,Lin L H,Xie J H.A mini-review of chemical and biological properties of polysaccharides from Momordica charantia[J].International Journal of Biological Macromolecules,2016,92:246-253.
[4]Miao J N,Regenstein J M,Qiu J Q,et al.Isolation,structural characterization and bioactivities of polysaccharides and its derivatives from Auricularia-A review[J].International Journal of Biological Macromolecules,2020,150:102-113.
[5]Yang L Q,Zhang L M.Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources[J].Carbohydrate Polymers,2009,76(3):349-361.
[6]Zhang J X,Wen C T,Zhang H H,et al.Review of isolation,structural properties,chain conformation,and bioactivities of Psyllium polysaccharides[J].International Journal of Biological Macromolecules,2019,139:409-420.
[7]Seedevi P,Moovendhan M,Vairamani S,et al.Structural characterization and biomedical properties of sulfated polysaccharide from the gladius of Sepioteuthis lessoniana (Lesson,1831)[J].International Journal of Biological Macromolecules,2016,85:117-125.
[8]Xiao Y D,Huang Q L,Zheng Z M,et al.Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparticles and enhancement of their antioxidant activities[J].International Journal of Biological Macromolecules,2017,99:483-491.
[9]Wang Z J,Xie J H,Shen M Y,et al.Sulfated modification of polysaccharides:Synthesis,characterization and bioactivities[J].Trends in Food Science & Technology,2018,74:147-157.
[10]Xie L M,Shen M Y,Hong Y Z,et al.Chemical modifications of polysaccharides and their anti-tumor activities[J].Carbohydrate Polymers,2020,229:115436.
[11]Xu Y F,Song S,Wei Y X,et al.Sulfated modification of the polysaccharide from Sphallerocarpus gracilis and its antioxidant activities[J].International Journal of Biological Macromolecules,2016,87:180-190.
[12]Li X L,Tu X F,Thakur K,et al.Effects of different chemical modifications on the antioxidant activities of polysaccharides sequentially extracted from peony seed dreg[J].International Journal of Biological Macromolecules,2018,112:675-685.
[13]Guo H,Li H Y,Liu L,et al.Effects of sulfated modification on the physicochemical properties and biological activities of β-glucans from Qingke(Tibetan hulless barley)[J].International Journal of Biological Macromolecules,2019,141:41-50.
[14]Xiao H,Fu X,Cao C L,et al.Sulfated modification,characterization,antioxidant and hypoglycemic activities of polysaccharides from Sargassum pallidum[J].International Journal of Biological Macromolecules,2019,121:407-414.
[15]Ghosh P,Adhikari U,Ghosal P K,et al.In vitro anti-herpetic activity of sulfated polysaccharide fractions from Caulerpa racemosa[J].Phytochemistry,2004,65(23):3151-3157.
[16]陈玲.南瓜多糖及其衍生物的制备与抗氧化活性研究[D].重庆:重庆师范大学,2019.
[17]Huang L X,Huang M,Shen M Y,et al.Sulfated modification enhanced the antioxidant activity of Mesona chinensis Benth polysaccharide and its protective effect on cellular oxidative stress[J].International Journal of Biological Macromolecules,2019,136:1000-1006.
[18]Liu Y T,You Y X,Li Y W,et al.Characterization of carboxymethylated polysaccharides from Catathelasma ventricosum and their antioxidant and antibacterial activities[J].Journal of Functional Foods,2017,38:355-362.
[19]Melo A M A,Oliveira M R F,Furtado R F,et al.Preparation and characterization of carboxymethyl cashew gum grafted with immobilized antibody for potential biosensor application[J].Carbohydrate Polymers,2020,228:115408.
[20]C M,B R K,G S,et al.Carboxymethylation of pectin:Optimization,characterization and in-vitro drug release studies[J].Carbohydrate Polymers,2018,194:311-318.
[21]Wang Z J,Xie J H,Shen M Y,et al.Carboxymethylation of polysaccharide from Cyclocarya paliurus and their characterization and antioxidant properties evaluation[J].Carbohydrate Polymers,2016,136:988-994.
[22]Cheng H,Huang G L,Huang H L.The antioxidant activities of garlic polysaccharide and its derivatives[J].International Journal of Biological Macromolecules,2020,145:819-826.
[23]Li S J,Xiong Q P,Lai X P,et al.Molecular modification of polysaccharides and resulting bioactivities[J].Comprehensive Reviews in Food Science and Food Safety,2016,15(2):237-250.
[24]Xie J H,Zhang F,Wang Z J,et al.Preparation,characterization and antioxidant activities of acetylated polysaccharides from Cyclocarya paliurus leaves[J].Carbohydrate Polymers,2015,133:596-604.
[25]Yuan H M,Zhang W W,Li X G,et al.Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated,acetylated,and phosphorylated derivatives[J].Carbohydrate Research,2005,340(4):685-692.
[26]Li J J,Hu X Z,Li X P,et al.Effects of acetylation on the emulsifying properties of Artemisia sphaerocephala Krasch.polysaccharide[J].Carbohydrate Polymers,2016,144:531-540.
[27]王警,吴妮妮,黄静,等.响应面试验优化龙眼肉多糖乙酰化工艺及其抗氧化活性[J].食品科学,2016,37(16):63-68.
[28]Song Y,Yang Y,Zhang Y Y,et al.Effect of acetylation on antioxidant and cytoprotective activity of polysaccharides isolated from pumpkin(Cucurbita pepo,lady Godiva)[J].Carbohydrate Polymers,2013,98(1):686-691.
[29]Chen F,Huang G L.Extraction,derivatization and antioxidant activity of bitter gourd polysaccharide[J].International Journal of Biological Macromolecules,2019,141:14-20.
[30]Ren Y Y,Sun P P,Ji Y P,et al.Carboxymethylation and acetylation of the polysaccharide from Cordyceps militaris and their α-glucosidase inhibitory activities[J].Natural Product Research,2020,34(3):369-377.
[31]Sun X,Zhong Y,Luo H T,et al.Selenium-containing polysaccharide-protein complex in Se-enriched Ulva fasciata induces mitochondria-mediated apoptosis in A549 human lung cancer cells[J].Marine Drugs,2017,15(7):215.
[32]Cheng L Z,Wang Y F,He X X,et al.Preparation,structural characterization and bioactivities of Se-containing polysaccharide:a review[J].International Journal of Biological Macromolecules,2018,120:82-92.
[33]Gao Z Z,Chen J,Qiu S L,et al.Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity[J].Carbohydrate Polymers,2016,136:560-569.
[34]Chen W X,Chen J Y,Wu H M,et al.Optimization of selenylation conditions for a pectic polysaccharide and its structural characteristic[J].International Journal of Biological Macromolecules,2014,69:244-251.
[35]He J Y,Wu Z,Pan D D,et al.Effect of selenylation modification on antitumor activity of peptidoglycan from Lactobacillus acidophilus[J].Carbohydrate Polymers,2017,165:344-350.
[36]Hou R R,Chen J,Yue C J,et al.Modification of lily polysaccharide by selenylation and the immune-enhancing activity[J].Carbohydrate Polymers,2016,142:73-81.
[37]Surhio M M,Wang Y F,Xu P,et al.Antihyperlipidemic and hepatoprotective properties of selenium modified polysaccharide from Lachnum sp[J].International Journal of Biological Macromolecules,2017,99:88-95.
[38]Xiao H,Chen C,Li C,et al.Physicochemical characterization,antioxidant and hypoglycemic activities of selenized polysaccharides from Sargassum pallidum[J].International Journal of Biological Macromolecules,2019,132:308-315.
[39]Deng C,Fu H T,Xu J J,et al.Physiochemical and biological properties of phosphorylated polysaccharides from Dictyophora indusiata[J].International Journal of Biological Macromolecules,2015,72:894-899.
[40]Zhang M,Su N N,Huang Q L,et al.Phosphorylation and antiaging activity of polysaccharide from Trichosanthes peel[J].Journal of Food and Drug Analysis,2017,25(4):976-983.
[41]Chen L,Huang G L.Antioxidant activities of phosphorylated pumpkin polysaccharide[J].International Journal of Biological Macromolecules,2019,125:256-261.
[42]Jiang N F,Li B X,Wang X Q,et al.The antioxidant and antihyperlipidemic activities of phosphorylated polysaccharide from Ulva pertusa[J].International Journal of Biological Macromolecules,2020,145:1059-1065.
[43]Feng H B,Fan J,Yang S P,et al.Antiviral activity of phosphorylated Radix Cyathulae officinalis polysaccharide against Canine Parvovirus in vitro[J].International Journal of Biological Macromolecules,2017,99:511-518.
[44]Chen J F,Huang G L.Antioxidant activities of garlic polysaccharide and its phosphorylated derivative[J].International Journal of Biological Macromolecules,2019,125:432-435.
[45]Ming K,Chen Y,Yao F K,et al.Phosphorylated Codonopsis pilosula polysaccharide could inhibit the virulence of duck hepatitis A virus compared with Codonopsis pilosula polysaccharide[J].International Journal of Biological Macromolecules,2017,94:28-35.
[46]Kshirsagar A C,Singhal R S.Preparation of hydroxypropyl corn and amaranth starch hydrolyzate and its evaluation as wall material in microencapsulation[J].Food Chemistry,2008,108(3):958-964.
[47]Liu W,Xu J,Jing P,et al.Preparation of a hydroxypropyl Ganoderma lucidum polysaccharide and its physicochemical properties[J].Food Chemistry,2010,122(4):965-971.
[48]张强.茯苓多糖的乙酰化磺酰化改性研究[D].天津:天津科技大学,2011.
[49]Qi H M,Liu X L,Zhang J B,et al.Synthesis and antihyperlipidemic activity of acetylated derivative of ulvan from Ulva pertusa[J].International Journal of Biological Macromolecules,2012,50(1):270-272.
[50]Liu Y T,Tang Q Q,Duan X Y,et al.Antioxidant and anticoagulant activities of mycelia polysaccharides from Catathelasma ventricosum after sulfated modification[J].Industrial Crops and Products,2018,112:53-60.
[51]Tang S,Wang T,Huang C X,et al.Sulfated modification of Arabinogalactans from Larix principis-rupprechtii and their antitumor activities[J].Carbohydrate Polymers,2019,215:207-212.
[52]Yu Y,Song Q Q,Huang L X,et al.Immunomodulatory activities of sulfated Cyclocarya paliurus polysaccharides with different degrees of substitution on mouse spleen lymphocytes[J].Journal of Functional Foods,2020,64:103706.
[53]Wang Y F,Hou G H,Li J L,et al.Structure characterization,modification through carboxymethylation and sulfation,and in vitro antioxidant and hypoglycemic activities of a polysaccharide from Lachnum sp[J].Process Biochemistry,2018,72:177-187.
[54]Cheng H,Huang G L.The antioxidant activities of carboxymethylated garlic polysaccharide and its derivatives[J].International Journal of Biological Macromolecules,2019,140:1054-1063.
[55]Liu Y H,Liu Y G,Jiang H Q,et al.Preparation,antiangiogenic and antitumoral activities of the chemically sulfated glucan from Phellinus ribis[J].Carbohydrate Polymers,2014,106:42-48.
[56]Parente J P,Ad觔o C R,da Silva B P,et al.Structural characterization of an acetylated glucomannan with antiinflammatory activity and gastroprotective property from Cyrtopodium andersonii[J].Carbohydrate Research,2014,391:16-21.
[57]Deng Y,Li M,Chen L X,et al.Chemical characterization and immunomodulatory activity of acetylated polysaccharides from Dendrobium devonianum[J].Carbohydrate Polymers,2018,180:238-245.
[58]Gu D,Huang L L,Chen X,et al.Structural characterization of a galactan from Ophiopogon japonicus and anti-pancreatic cancer activity of its acetylated derivative[J].International Journal of Biological Macromolecules,2018,113:907-915.
[59]Li,Zhao,Gao,et al.The antioxidant and anti-aging effects of acetylated mycelia polysaccharides from Pleurotus djamor[J].Molecules,2019,24(15):2698.
[60]Li C,Huang Q,Fu X,et al.Characterization,antioxidant and immunomodulatory activities of polysaccharides from Prunella vulgaris Linn[J].International Journal of Biological Macromolecules,2015,75:298-305.
[61]Liao N B,Chen S G,Ye X Q,et al.Structural characterization of a novel glucan from Achatina fulica and its antioxidant activity[J].Journal of Agricultural and Food Chemistry,2014,62(11):2344-2352.
[62]Leiro J M,Castro R,Arranz J A,et al.Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C.Agardh[J].International Immunopharmacology,2007,7(7):879-888.
[63]Liu X,Xie J H,Jia S,et al.Immunomodulatory effects of an acetylated Cyclocarya paliurus polysaccharide on murine macrophages RAW264.7[J].International Journal of Biological Macromolecules,2017,98:576-581.
[64]Yu Y,Shen M Y,Wang Z J,et al.Sulfated polysaccharide from Cyclocaryapaliurus enhances the immunomodulatory activity of macrophages[J].Carbohydrate Polymers,2017,174:669-676.
[65]Liu X F,Wang X Q,Xu X F,et al.Purification,antitumor and antiinflammation activities of an alkali-soluble and carboxymethyl polysaccharide CMP33 from Poria cocos[J].International Journal of Biological Macromolecules,2019,127:39-47.
[66]Feng,Fan,Lin,et al.Immunomodulatory effects of phosphorylated Radix cyathulae officinalis polysaccharides in immunosuppressed mice[J].Molecules,2019,24(22):4150.
[67]Machová E,C姚í觩ová A,Bystrick伥P.Effect of carboxymethylation on antioxidant properties and radical degradation of mannans and glucans[J].Carbohydrate Polymers,2014,112:603-607.
[68]Rice P J,Kelley J L,Kogan G,et al.Human monocyte scavenger receptors are pattern recognition receptors for(1→3)-β-D-glucans[J].Journal of Leukocyte Biology,2002,72(1):140-146.
[69]CHEN X,ZHANG L,CHEUNG P C K.Immunopotentiation and anti-tumor activity of carboxymethylated-sulfated β-(1→3)-d-glucan from Poria cocos[J].International Immunopharmacology,2010,10(4):398-405.
[70]GULLIFORD M,LATINOVIC R.Mortality in type 2 diabetic subjects prescribed metformin and sulphonylurea drugs in combination:cohort study[J].Diabetes/metabolism Research & Reviews,2010,20(3):239-245.
[71]RU Y,LIU K X,KONG X Y,et al.Synthesis of selenylated polysaccharides from Momordica charantia L.and its hypoglycemic activity in streptozotocin-induced diabetic mice[J].International Journal of Biological Macromolecules,2020,152:295-304.
[72]JOUAULT S C,CHEVOLOT L,HELLEY D,et al.Characterization,chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernus[J].Biochimica Et Biophysica Acta,2001,1528(2/3):141-151.
[73]FAN L H,JIANG L,XU Y M,et al.Synthesis and anticoagulant activity of sodium alginate sulfates[J].Carbohydrate Polymers,2011,83(4):1797-1803.
[74]YANG J H,LUO K,LI D L,et al.Preparation,characterization and in vitro anticoagulant activity of highly sulfated chitosan[J].International Journal of Biological Macromolecules,2013,52:25-31.
[75]LIU H Z,LI F P,LUO P.Effect of Carboxymethylation and Phosphorylation on the Properties of Polysaccharides from Sepia esculenta Ink:Antioxidation and Anticoagulation in Vitro[J].Mar Drugs,2019,17(11):626.
[76]CHEN L,HUANG G L.The antiviral activity of polysaccharides and their derivatives[J].International Journal of Biological Macromolecules,2018,115:77-82.
[77]ZHANG J,HU Y L,WANG D Y,et al.The optimization of sulfation modification conditions for ophiopogonpolysaccharide based on antiviral activity[J].International Journal of Biological Macromolecules,2012,51(4):657-662.
[78]LI X L,THAKUR K,ZHANG Y Y,et al.Effects of different chemical modifications on the antibacterial activities of polysaccharides sequentially extracted from peony seed dreg[J].International Journal of Biological Macromolecules,2018,116:664-675.
[79]LV H T,DUAN K,SHAN H.Selenylation Modification of Degraded Polysaccharide from Enteromorpha prolifera and Its Biological Activities[J].Journal of Ocean University of China,2018,17(2):445-450.
[80]YUAN F F,GAO Z,LIU W B,et al.Characterization,Antioxidant,Anti-Aging and Organ Protective Effects of Sulfated Polysaccharides from Flammulina velutipes[J].Molecules,2019,24(19):3517.
[81]LI Y,YUAN Y,LEI L,et al.Carboxymethylation of polysaccharide from Morchella angusticepes Peck enhances its cholesterol-lowering activity in rats[J].Carbohydrate Polymers,2017,172:85-92.
[82]ZHAO G H,ZHAI X Y,QU M,et al.Sulfated modification of the polysaccharides from Crassostrea gigas and their antioxidant and hepatoprotective activities through metabolomics analysis[J].International Journal of Biological Macromolecules,2019,129:386-395.
[83]GAO Z Z,ZHANG C,TIAN W J,et al.The antioxidative and hepatoprotective effects comparison of Chinese angelica polysaccharide(CAP)and selenizing CAP (sCAP)in CCl4induced hepatic injury mice[J].International Journal of Biological Macromolecules,2017,97:46-54.
[84]WEI D F,CHEN T,YAN M F,et al.Synthesis,characterization,antioxidant activity and neuroprotective effects of selenium polysaccharide from Radix hedysari[J].Carbohydrate Polymers,2015,125:161-168.
[85]SURHIO M M,WANG Y,FANG S,et al.Anti-fatigue activity of a Lachnum polysaccharide and its carboxymethylated derivative in mice[J].Bioorganic & Medicinal Chemistry Letters,2017,27(20):4777-4780.
Recent Advances in Understanding the Effect of Chemical Modification on the Structure and Biological Activities of Polysaccharides
李文婧,张晨,李大鹏.化学修饰对多糖结构与生物活性影响的研究进展[J].食品研究与开发,2021,42(2):205-213.
LI Wenjing,ZHANG Chen,LI Dapeng.Recent Advances in Understanding the Effect of Chemical Modification on the Structure and Biological Activities of Polysaccharides[J].Food Research and Development,2021,42(2):205-213.