岩藻多糖的抗癌活性研究进展

闫洪雪1,孙占一1,赵丽丽1,张鹏鹏1,刘翔2

(1.青岛明月海藻集团有限公司海藻活性物质国家重点实验室,山东青岛266400;2.青岛明月海藻集团有限公司,山东青岛266400)

摘 要:岩藻多糖(fucoidan),也称褐藻多糖硫酸酯或褐藻糖胶,是由含硫酸基的岩藻糖(fucose)所构成的海洋复合多糖物质。目前,医学界正在对岩藻多糖进行各种生物功能的研究,已经证实具有多种生物功能,如抗癌作用、增强免疫力、抗血栓、降血压、抗氧化、抗幽门螺旋杆菌等。主要概述岩藻多糖的抗癌活性的研究进展,并对其抗癌潜力进行展望。

关键词:岩藻多糖;岩藻糖;生物功能;抗癌;研究进展

海藻是广泛存在于各海域中的海洋植物,且种类丰富,主要包括褐藻、红藻、绿藻、蓝藻、微藻等,其富含的活性物质也涵盖了多糖、萜类、蛋白、多酚、甾醇、环状多硫化合物、大环内酯、微量元素等几大门类[1-2]。岩藻多糖是广泛存在于褐藻表面的黏滑成分,是一种多糖硫酸酯,主要有两种类型骨架,分别是以重复的C-1,3键结合的 α-L-岩藻糖和以 C-1,3 键、C-1,4键交替结合的α-L-岩藻糖(如图1所示[3])。

图1 褐藻中的两种岩藻多糖结构[3]
Fig.1 Two kinds of diatomaceous polysaccharide structure in brown algae[3]

其硫酸基团多位于4号位,少数位于3号位,是一种天然的杂聚糖[4-6],研究表明,岩藻多糖可以直接发挥抗癌作用,也可以通过增强免疫力间接杀死癌细胞(如激活自然杀伤细胞和巨噬细胞)。直接发挥作用涉及细胞周期特别是G1期的阻滞,诱导细胞凋亡、抗血管生成和抑制细胞转移等,这些过程是相互关联的[7-8]。此外,岩藻多糖还具有抗凝血[9]、抗氧化[10]、抗幽门螺旋杆菌[11]等生物学活性。与化学合成药物相比,天然提取物因其生物活性广泛和副作用低被用来作为抗肿瘤药物引起了患者越来越多的关注。许多研究表明,岩藻多糖对肿瘤细胞有细胞毒性作用,且对一般的细胞无毒副作用[12-15]。本文综述了岩藻多糖在抗肿瘤方面的研究进展及相关的作用机制,为岩藻多糖抗肿瘤应用奠定基础。

1 岩藻多糖的抗癌活性

研究发现,岩藻多糖抗癌活性主要包括3个方面。

第一,岩藻多糖能够诱导细胞凋亡,通过调节癌细胞生长周期,影响癌细胞正常的有丝分裂,抑制癌细胞增殖。Yang等将从墨角藻中提取的岩藻多糖注射到患有淋巴瘤的小鼠体内,观察小鼠体内肿瘤体积的变化,发现岩藻多糖能够有效地抑制体内肿瘤细胞的生长[16]。此外,岩藻多糖通过激活癌细胞的凋亡信号,引起癌细胞DNA损伤,染色体凝聚,诱导癌细胞自发凋亡。Yamasaki-Miyamoto等将来自于裙带菜孢子叶中提取的岩藻多糖与人乳腺上皮细胞(human mamma-ry epithelial cells,HMEC)和人乳腺癌细胞 MCF-7(human breast cancer cell)共同培养,从细胞凋亡检测结果来看,岩藻多糖诱导核间体DNA片段化,染色质浓缩,caspase-7、-8、-9 的激活以及聚腺苷二磷酸核糖(ribose,adenosine-diphosphate ribose,ADP) 聚合酶的裂解,这些数据表明岩藻多糖能够通过caspase-8依赖性途径在MCF-7细胞中诱导细胞凋亡[17]

第二,岩藻多糖能够抑制血管内皮生长因子(vascular endothelial growth factor,VEGF)的生成,抑制肿瘤血管的新生,切断瘤体的营养供给源,饿死肿瘤,最大程度地阻断癌细胞的扩散和转移。Koyanagi等研究发现天然的和过硫酸化的岩藻多糖都可以通过抑制血管内皮生长因子165与其细胞表面受体结合来抑制人脐静脉内皮细胞中血管内皮生长因子165(VEGF165)的有丝分裂和趋化作用。过硫酸化的岩藻多糖还抑制了在小鼠体内肉瘤180细胞诱导的新生血管形成。在小鼠Lewis肺癌和B16黑色素瘤中也观察到了其抑制作用。这些结果表明,岩藻多糖的抗肿瘤作用与其抗血管生成的作用有关,且增加在岩藻多糖分子中的硫酸基团的数量有助于提高其抗血管生成和抗肿瘤的活性[18]

第三,岩藻多糖还能够活化人体的免疫系统,增强自然杀伤性细胞(natural killer cell,NK细胞)和T细胞杀伤肿瘤细胞的能力。Zhang等将来自于岩衣藻、巨藻、裙带菜、墨角藻中提取的岩藻多糖分别注射到小鼠体内,观察小鼠体内自然杀伤细胞的活性及肿瘤坏死因子(tumor necrosis factor-α,TNF-α)的浓度,研究发现岩藻多糖能够有效地提升NK细胞的杀伤活性,并能促进体内产生肿瘤坏死因子[19]

1.1 岩藻多糖抗结肠癌活性

Vishchuk等将从褐藻Saccharina cichorioides中提取的岩藻多糖作用于人结肠癌细胞DLD-1细胞系,发现其可以通过抑制上皮生长因子作用,来抑制肿瘤细胞增殖[20]。Chen等研究发现,岩藻多糖作用于人结肠癌细胞HCT116中,通过激活内质网应激通路,引起细胞凋亡,并可激活caspase(含半胱氨酸的天冬氨酸蛋白水解酶)-9,caspase-3,引发 DNA 损伤[21]。Thinh等将从莫氏马尾藻中提取的岩藻多糖SmF1、SmF2、SmF3作用于结肠癌细胞DLD-1体现了极小的细胞毒性并能有效抑制癌细胞的增殖[22]。Kim等研究了岩藻多糖对人结肠癌细胞HT-29和HCT116的细胞凋亡的影响,其研究发现岩藻多糖诱导HT-29和HCT116人类结肠癌细胞凋亡是通过死亡受体和线粒体介导的凋亡通路介导的[23]。Azuma等给患结肠癌的小鼠口服低分子量(6.5 kDa~40 kDa)、中等分子量(110 kDa~138 kDa)和高分子量(300 kDa~330 kDa)的岩藻多糖,发现食用中等分子量的岩藻多糖可明显抑制结肠癌肿瘤细胞的生长,口服低分子量和高分子量岩藻多糖的小鼠的存活时间相对于对照组有显著提高,同时还发现口服岩藻多糖后小鼠脾脏中NK细胞的数量也有显著增加[24]

1.2 岩藻多糖抗乳腺癌活性

Yamasakimiyamoto等研究了岩藻多糖对人乳腺癌MCF-7细胞凋亡的诱导过程。凋亡实验结果表明,岩藻多糖诱导了核间质DNA的碎裂、染色质凝聚、caspase-7、-8、-9的激活和聚ADP核糖聚合酶的裂解。其研究表明岩藻多糖可以通过MCF-7细胞中的caspase-8依赖通路诱导凋亡细胞死亡[25]。Chen等研究发现用岩藻多糖处理可以下调转移性MDA-MB-231乳腺癌细胞中葡萄糖调节蛋白78(glucose regulated protein 78,GRP78)的表达以及在转移性HCT116结肠癌细胞中的内质网(endoplasimic reticulum,ER)蛋白29(endoplasimic reticulum protein,ERp29)的表达。岩藻多糖可以促进ER Ca2+依赖的钙调蛋白依赖性激酶II(calmodulin depedent kinase II,CaMKII)磷酸化,以及 B淋巴细胞瘤-2基因(B-cell lymphoma-2,Bcl-2)相关的 X 蛋白(Bcl-2 associated X protein,Bax)以及级联蛋白12在MDA-MB-231细胞中的表达[21]。Vishchuk等研究了从褐藻中提取的岩藻多糖对小鼠表皮细胞JB6Cl41、人类结肠癌DLD-1、乳腺癌T-47D、黑色素瘤RPMI-7951细胞系的作用,发现岩藻多糖能够有效抑制人类癌细胞增殖且对小鼠表皮细胞毒性极低[26]。此外,科学家通过 3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐[3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide,MTT]法测定以剂量依赖性的方式证实用岩藻糖处理可以降低人乳腺细胞MCF-7的活细胞数量;通过流式细胞术检测用岩藻多糖处理的MCF-7细胞的G1期阻滞,发现其与细胞周期蛋白D1和CDK-4基因表达的减少有关。膜联蛋白V(Annexin-V)/碘化丙啶(propidium iodide,PI)染色结果表明,凋亡细胞数量与细胞色素C、caspase-8、Bax、Bcl-2的转录水平和翻译水平相关。研究结果表明,岩藻多糖可通过调节细胞周期和凋亡相关基因的表达诱导G1期MCF-7细胞阻滞和细胞凋亡[27]。岩藻多糖还能抑制乳腺癌细胞4T1和人乳腺癌复苏形式细胞MDA-MB-231的生长,并减少其细胞集落的形成[28]

1.3 岩藻多糖抗肝癌活性

越来越多的证据显示了岩藻多糖的抗肿瘤活性。岩藻多糖可通过抑制细胞周期,诱导多种癌症细胞包括肝细胞癌(hepatic celluler cancer,HCC)的凋亡来体现抗肿瘤的活性。通过研究其对microRNA表达的影响,科学家发现其可显著上调人类HCC细胞的微小核糖核酸-29b(microRNA-29b,miR-29b),同时抑制其下游目标DNA甲基化转移酶3B(DNA methyltransferase,DNMT3B)的表达。而被DNMT3B抑制的转移抑制因子 1(tumor metastasis suppressor gene 1,MTSS1)的信使核糖核酸(Messenger RNA,mRNA)和蛋白水平则在使用岩藻多糖处理后显著升高。此外,岩藻多糖还下调肝癌细胞的转化生长因子(transforming growth factor,TGF)受体和SMAD信号[细胞内传递骨形态发生蛋白(bone morphogenetic protein,BMP)信号的分子叫做SMAD,由果蝇中 MAD(mother against decapentaplegic)和线虫中同源分子SMA(small body size)两个名称合并而成]。这些效应能够抑制和防止细胞外基质降解,并减少HCC细胞的侵袭活性[29]。而将人类肝癌细胞smm-7721细胞用岩藻多糖处理后则显示明显的生长抑制和凋亡,出现几个典型特征如染色质冷凝和边缘化,数量减少,线粒体肿胀和空泡等。研究还发现岩藻多糖诱导的肝癌细胞smm-7721凋亡与减少谷胱甘肽(glutathione,GSH)的消耗有关,同时还提高了细胞内活性氧(reactive oxygen species,ROS)水平并伴有线粒体超微结构损坏,线粒体膜电位的去极化等。这些证据表明岩藻多糖可通过ROS介导的线粒体通路来诱导肝癌细胞smm-7721凋亡[30]。癌细胞转移是癌症导致死亡的主要原因之一。这是一个涉及多个基因的复杂的生物学过程、步骤和阶段。它还与癌症细胞的许多生物活动密切相关,如生长、入侵、粘连、血源转移、淋巴转移等。Cho等研究了岩藻多糖的抗肝癌细胞转移效应和调节转移的关键信号的作用。体外研究和体内试验均证明岩藻多糖可通过对分化相关基因1(N-myc downstream regulated gene 1又称calciumassociated protein 43,NDRG-1/CAP43)-依赖性因子 ID-1的抑制作用来抑制肝癌细胞的侵袭性[31]。研究人员用从裙带菜孢子叶中提取的岩藻多糖处理具有高侵袭性和淋巴转移潜能小鼠肝癌细胞系Hca-F,在体内和体外都能检测到岩藻多糖对癌细胞侵袭和转移的影响。体内试验结果表明随着岩藻多糖的浓度和处理时间的增长表现出抑制作用,体外试验则发现其能够抑制Hca-F细胞的生长、迁移、侵袭和粘附能力[32]。此外,岩藻多糖还可以通过上调胞外信号调节激酶(extracellular signal-regulated kinases2/1,p42/44 mapk) 介导的NDRG-1/CAP43来抑制肝癌细胞的侵袭,并可以在常氧量条件下通过上调p42/44 mapk介导的空泡膜蛋白(vacuolar membrane protein 1,1VMP-1)的表达显著降低体内肝癌细胞转移,并通过caspase-8的衰减、caspase-7解离和抑制caspase-8和Fas相关死亡域的活化,降低胆汁酸诱导的肝细胞凋亡[33]

1.4 岩藻多糖抗肺癌活性

科学家用从裙带菜中提取的岩藻多糖处理人肺癌细胞A549细胞,发现其有强烈的抗增殖活性。研究还发现岩藻多糖通过下调p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)、磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B,PI3K/Akt)、激活细胞外信号调节激酶1和2丝裂原激活的蛋白激酶(extracellular signal-regulated kinase1/2 mitogen-activated protein kinase,ERK1/2 MAPK)通路来诱导A549细胞的凋亡[34]。Moreau等用从海藻中提取的岩藻多糖处理人类非小细胞支气管肺癌NSCLC-N6细胞,其体现的抗增殖效应及化学药物抵抗力有望在体外实现。处理后细胞的生长在细胞周期的G1期似乎受到抑制,且预处理的细胞动力学研究表明,这种生长阻滞是不可逆转的[35]。Huang等研究发现岩藻多糖可以减轻C57BL/6小鼠的病毒性症状并能抑制C57BL/6小鼠中Lewis肺癌细胞的肺转移[36]。另有学者研究了从鄂霍次克海褐藻中提取的岩藻多糖在移植了Lewis肺癌细胞的C57BL/6小鼠中的抗肿瘤、抗癌细胞转移的活性。研究发现在单次重复用药后,以10 mg/kg的剂量服用岩藻多糖,可产生中度抗肿瘤和抗转移效果[37]。研究还发现,岩藻多糖抑制了在小鼠体内肉瘤180细胞诱导的新生血管形成。在小鼠Lewis肺癌和B16黑色素瘤的生长中也观察到了抑制作用。这些结果表明,岩藻多糖可以通过其抗血管生成的能力,增加抗肿瘤活性的有效性[38]

1.5 岩藻多糖抗白血病活性

Jin等研究了岩藻多糖对人类髓性白血病细胞凋亡和岩藻多糖介导的信号通路。研究发现岩藻多糖通过激活促分裂原活化蛋白激酶激酶激酶1和2(mitogen-activated protein kinase kinase kinase1/2,MEK1/2)、胞外信号调节激酶1和2(extracellular signal-regulated kinase1/2,ERK1/2)和c-jun氨基末端激酶(c-jun N-terminal kinase,JNK)能够诱导 HL-60、NB4、THP-1 细胞凋亡,但不能诱导K562细胞的凋亡。用岩藻多糖处理HL-60细胞,能够诱导caspase-8、-9、-3的激活、Bid的分裂和线粒体膜透性的改变[39]。科学家通过用岩藻多糖喂养小鼠,研究岩藻多糖对小鼠A20白血病细胞肿瘤生长的影响及T细胞受体转基因(DO-11-10-Tg)小鼠中T细胞介导免疫的反应。在食物中添加岩藻多糖喂养的小鼠,抑制淋巴瘤细胞转染的卵清蛋白的溶解活性增强,NK细胞的杀伤作用也显著增强[40]。Yang等通过体内和体外试验确定了岩藻多糖在弥漫性大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)细胞中抗肿瘤活性。用岩藻多糖处理可引起G0/G1期细胞周期阻滞,并伴有细胞周期蛋白激酶抑制因子p21的上调和细胞周期蛋白D1、周期蛋白依赖性激酶 4(cyclin-dependent kinases4,CDK4)、CDK6 的下调。此外在DLBCL细胞株和主DLBCL细胞中也诱导了细胞凋亡、线粒体膜电位的丧失、细胞色素C和细胞凋亡诱导因子从线粒体进入细胞质[41]

1.6 岩藻多糖抗膀胱癌活性

用岩藻多糖处理人类膀胱癌细胞5637发现,岩藻多糖表现出明显的生长抑制功能,这表现在促进G1期相关上调因子细胞周期蛋白依赖性激酶抑制剂1(cyclin-dependent kinase inhibitor 1,p21WAF1)的表达和抑制细胞周期蛋白和细胞周期蛋白依赖性激酶的表达。同时还发现使用岩藻多糖处理还能够抑制膀胱癌细胞的转移和侵染,这是通过阻断核转录因子-B(nuclear transcription factorB,NF-B)和激活子蛋白-1(activatorprotein1,AP-1)的激活来抑制基质金属蛋白酶 9(matrix metalloprotein9,MMP9)的表达而实现的。在另一种膀胱癌T24细胞中也发现了类似的结果[42]。Han等报道了岩藻多糖诱导的人膀胱癌细胞5637凋亡与Bax/Bcl-2比率的增加、线粒体膜的消散和线粒体中细胞色素C的释放有关。在同样的试验条件下,用岩藻多糖处理能够降低人端粒酶逆转录酶(human telomerase reverse transcriptase,hTERT)表达及原癌基因转录因子(proto-oncogene transcription factor,c-myc)和刺激蛋白 1(stimulating protein 1,Sp1)的表达。这伴随着端粒酶活性的降低。同时发现用岩藻多糖处理还能抑制PI3K/Akt信号通路的激活,这能够增强岩藻多糖诱导的凋亡和降低端粒酶活性[43]。此外研究还发现低分子量的岩藻多糖可以抑制缺氧刺激的H2O2的形成、低氧诱导因子-1积累、转录活性血管内皮生长因子的分泌,以及低氧性人膀胱癌细胞T24的迁移和侵袭。还能抑制T24膀胱癌细胞中低氧活化信号PI3K/AKt/mTOR(mammalian target of rapamycin,哺乳动物雷帕霉素靶向基因)/p70S6K(p70 ribosomal protein S6 kinase,p70核糖体蛋白 S6激酶)/4EBP-1(Eukaryotic translation initiation factor 4E-binding protein 1,真核转录起始因子4E结合蛋白1)的磷酸化[44]

1.7 其他抗癌活性

Vishchuk等用200 μg/mL岩藻多糖添加量处理人黑素癌细胞RPMI-7951细胞系,发现使用岩藻多糖处理能够调节肿瘤细胞生长周期,影响肿瘤细胞有丝分裂[45]。而用5 mg/kg岩藻多糖添加量喂养小鼠,研究对小鼠黑素瘤细胞B16的作用,则发现岩藻多糖能够抑制血管内皮生长因子(vascular endothelial growth factor,VEGF)表达,抑制肿瘤血管生成,同时还发现岩藻多糖过硫酸化后效果更好[46]。Boo等用从裙带菜中提取的岩藻多糖以200 μg/mL的用量来处理人前列腺癌细胞PC-3细胞系,发现岩藻多糖处理后可以激活ERK1/2 MAPK,抑制p38 MAPK和PI3K/AKt信号通路,促进前列腺癌细胞PC-3的细胞凋亡[47]。此外用岩藻多糖治疗移植了人前列腺癌细胞DU-145的小鼠,发现添加岩藻多糖喂养的小鼠,p38 MAPK和PI3K/Akt信号通路被抑制,促进细胞凋亡,且Bcl-2基因表达也受到抑制,同时还能够激活caspases-9,引发DNA损伤[48]

2 展望

癌症是多种病因的多因素疾病。具有细胞分化和增殖异常、生长失去控制、浸润性和转移性等生物学特征,其发生是一个多因子、多步骤的复杂过程,与吸烟、感染、职业暴露、环境污染、不合理膳食、遗传因素等密切相关。癌症主要通过肿瘤细胞扩散到远端器官(转移)而导致死亡[49]。目前治疗癌症主要依赖传统治疗方式,手术、放疗、化疗等,副作用严重。因此,使用低毒性的天然物质是科学家和医学家们最感兴趣的。目前,科学家们在体外和体内的研究已经证明了岩藻多糖的抗肿瘤的作用,包括在各种癌症细胞中抑制生长[49-52]、转移[53-54]、血管生成[38,53]和诱导细胞凋亡[49,55-56]。此外,岩藻多糖还能够与巨噬细胞作用产生细胞因子和趋化因子增强机体的免疫功能,从而间接抑制肿瘤细胞的生长[57]。岩藻多糖还具有免疫调节作用,因此在与化疗药物及放疗进行联合使用时,可缓解化疗带来的副作用[11]。综上所述,岩藻多糖在治疗癌症方面具有很大的潜力,未来将会有更多的研究来探索其在治疗癌症方面的机理和功能,更好地为新药研究提供方向。

参考文献:

[1] 韩玲,张淑平,刘晓慧.海藻生物活性物质应用研究进展[J].化工进展,2012,31(8):1794-1800

[2] 薛山,赵国华.低分子质量岩藻多糖的制备与生物学功能研究[J].农产品加工.创新版,2009(6):35-37,49

[3]Cumashi A,Ushakova N A,Preobrazhenskaya M E,et al.A comparative study of the anti-inflammatory,anticoagulant,antiangiogenic,andantiadhesive activities of nine different fucoidans from brown seaweeds[J].Glycobiology,2007,17:541-552

[4] Li B,Lu F,Wei X,et al.Fucoidan:Structure and Bioactivity[J].Molecules,2008,13(8):1671-1695

[5] Aspinall G O.Polysaccharides[M].Oxford:Pergamon Press,1970:145-157

[6] Holtkamp A D,Kelly S,Ulber R,et al.Fucoidans and fucoidanasesfocus on techniques for molecular structure elucidation and modification of marine polysaccharides[J].Appl Microbiol Biotechnol,2009,82:1-11

[7] Park H Y,Kim G Y,Moon S K,et al.Fucoidan inhibits the proliferation of human urinary bladder cancer T24 cells by blocking cell cycle progression and inducing apoptosis[J].Molecules,2014,19:5981-5998

[8] Teng H,Yang Y,Wei H,et al.Fucoidan suppresses hypoxia-induced lymphangiogenesis and lymphatic metastasis in mouse hepatocarcinoma[J].Marine Drugs,2015,13:3514-3530

[9] 刘书琦.岩藻多糖的分离纯化、结构分析及抗凝血活性的研究[D].上海:华东理工大学,2008

[10]吴靖娜.海藻硫酸多糖抗氧化活性研究进展[J].渔业研究,2009(3):75-79

[11]Back H I,Kim S Y,Park S H,et al.Effects of Fucoidan supplementation on Helicobacter pylori in humans[J].The FASEB Journal,2010,24

[12]Min E Y,Kim I H,Lee J,et al.The effects of fucodian on senescence are controlled by the p16INK4a-pRb and p14Arf-p53 pathways in hepatocellular carcinoma and hepatic cell lines[J].International Journal of Oncology,2014,45:47-56

[13]Vishchuk O S,Ermakova S P,Zvyagintseva T N.Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida:Isolation,structural characteristics,and antitumor activity[J].Carbohydrate Research,2011,346:2769-2776

[14]Xue M,Ge Y,Zhang J,et al.Anticancer properties and mechanisms of fucoidan on mouse breast cancer in vitro and in vivo[J].PLoS One,2012,7:e43483.doi:10.1371/journal.pone.0043483

[15]Yan M D,Yao C J,Chow J M,et al.Fucoidan elevates microRNA-29b to regulate DNMT3B-MTSS1 axis and inhibit EMT in human hepatocellularcarcinomacells[J].MarineDrugs,2015,13:6099-6116

[16]Guang,Yang,Qianqiao,et al.Antitumor activity of fucoidan against diffuse large B cell lymphoma in vitro and in vivo[J].Journal of biochemistry and biophysics.2015,47(11):925-931

[17]Yamasaki-Miyamoto Y,Yamasaki M,Tachibana H,et al.Fucoidan induces apoptosis through activation of caspase-8 on human breast cancer MCF-7 cells[J].Journal of Agricultural&Food Chemistry,2009,57(18):8677-8682

[18]Koyanagi S,Tanigawa N,Nakagawa H,et al.Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities[J].Biochemical Pharmacology,2003,65(2):173-179

[19]Zhang W,Oda T,Yu Q,et al.Fucoidan from Macrocystis pyrifera Has Powerful Immune-Modulatory Effects Compared to Three Other Fucoidans[J].Marine Drugs,2015,13(3):1084-1104

[20]Vishchuk O S,Ermakova S P,Zvyagintseva T N.The fucoidans from brown algae of Far-Eastern seas:anti-tumor activity and structurefunction relationship[J].Food Chemistry,2013,141(2):1211-1217

[21]Chen S,Zhao Y,Zhang Y,et al.Fucoidan Induces Cancer Cell Apoptosis by Modulating the Endoplasmic Reticulum Stress Cascades[J].Plos One,2014(9):e108157.doi:10.1371/journal.pone.0108157

[22]Thinh P D,Menshova R V,Ermakova S P,et al.Structural Characteristics and Anticancer Activity of Fucoidan from the Brown Alga Sargassum mcclurei[J].Marine Drugs,2013,11(5):1456-1476

[23]Kim E J,Park S Y,Lee J Y,et al.Fucoidan present in brown algae induces apoptosis of human colon cancer cells[J].Bmc Gastroenterology,2010,10(1):96

[24]Azuma K,Ishihara T,Nakamoto H,et al.Effects of Oral Administration of Fucoidan Extracted from Cladosiphon okamuranus on Tumor Growth and Survival Time in a Tumor-Bearing Mouse Model[J].Marine Drugs,2012(10):2337-2348

[25]Yamasakimiyamoto Y,Yamasaki M,Tachibana H,et al.Fucoidan Induces Apoptosis through Activation of Caspase-8 on Human Breast Cancer MCF-7 Cells[J].J Agric Food Chem,2009,57(18):8677-8682

[26]Vishchuk O S,Ermakova S P,Zvyagintseva T N.The fucoidans from brown algae of Far-Eastern seas:anti-tumor activity and structurefunction relationship[J].Food Chemistry,2013,141(2):1211-1217

[27]Amal,Banafa,Sadia,et al.Fucoidan Induces GI Phase Arrest and Apoptosis through Caspases-dependent Pathway and ROS Induction in Human Breast Cancer MCF-7 Cells[J].Journal of huazhong university of science and technology:Medical of English and German version,2013(5):717-724

[28]Hsu H Y,Lin T Y,Hwang P A,et al.Fucoidan induces changes in the epithelial to mesenchymal transition and decreases metastasis by enhancing ubiquitin-dependent TGFÎ2receptor degradation in breast cancer[J].Carcinogenesis,2013,34(4):874-884

[29]Yan M D,Yao C J,Chow J M,et al.Fucoidan Elevates MicroRNA-29b to Regulate DNMT3B-MTSS1 Axis and Inhibit EMT in Human Hepatocellular Carcinoma Cells[J].Marine Drugs,2015,13(10):6099-6116

[30]Yang L,Wang P,Wang H,et al.Fucoidan Derived fromUndaria pinnatifidaInduces Apoptosis in Human Hepatocellular Carcinoma SMMC-7721 Cells via the ROS-Mediated Mitochondrial Pathway[J].Marine Drugs,2013,11(6):1961-1976

[31]Cho Y,Cho E J,Lee J H,et al.Fucoidan-induced ID-1 suppression inhibits the in vitro,and in vivo,invasion of hepatocellular carcinoma cells[J].Biomedicine&Pharmacotherapy,2016,83:607-616

[32]Wang P,Liu Z,Liu X,et al.Anti-metastasis effect of fucoidan from Undaria pinnatifida sporophylls in mouse hepatocarcinoma Hca-F cell[J].Plos One,2014,9(8):e106071.doi:10.1371/journal.pone.0106071

[33]Yuri C,Jung-Hwan Y,Jeong-Ju Y,et al.Fucoidan protects hepatocytes from apoptosis and inhibits invasion of hepatocellular carcino-ma by up-regulating p42/44 MAPK-dependent NDRG-1/CAP43[J].Acta Pharmaceutica Sinica B,2015,5(6):544-553

[34]Boo H J,Hyun J H,Kim S C,et al.Fucoidan from Undaria pinnatifida,Induces Apoptosis in A549 Human Lung Carcinoma Cells[J].Phytotherapy Research Ptr,2011,25(7):1082-1086

[35]Moreau D,Thomas-Guyon H,Jacquot C,et al.An extract from the brown alga Bifurcaria bifurcata,induces irreversible arrest of cell proliferation in a non-small-cell bronchopulmonary carcinoma line[J].Journal of Applied Phycology,2006,18(1):87-93

[36]Huang T H,Chiu Y H,Chan Y L,et al.Prophylactic Administration of Fucoidan Represses Cancer Metastasis by Inhibiting Vascular Endothelial Growth Factor(VEGF)and Matrix Metalloproteinases(MMPs)in Lewis Tumor-Bearing Mice[J].Marine Drugs,2015,13(4):1882-1900

[37]Alekseyenko T V,Zhanayeva S Y,Venediktova A A,et al.Antitumor and antimetastatic activity of fucoidan,a sulfated polysaccharide isolated from the Okhotsk Sea Fucus evanescens brown alga[J].Bulletin of Experimental Biology&Medicine,2007,143(6):730-732

[38]Koyanagi S,Tanigawa N,Nakagawa H,et al.Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities[J].Biochemical Pharmacology,2003,65(2):173-179

[39]Jin J O,Song M G,Kim Y N,et al.The mechanism of fucoidan-induced apoptosis in leukemic cells:involvement of ERK1/2,JNK,glutathione,and nitric oxide[J].Mol Carcinog,2010,49(8):771-782

[40]Maruyama H,Tamauchi H,Iizuka M,et al.The role of NK cells in antitumor activity of dietary fucoidan from Undaria pinnatifida sporophylls(Mekabu)[J].Planta Medica,2006,72(15):1415-1417

[41]Yang G,Zhang Q,Kong Y,et al.Antitumor activity of fucoidan against diffuse large B cell lymphoma in vitro and in vivo[J].Journal of biochemistry and biophysics,2015,47(11):925-931

[42]Cho T M,Kim W J,Moon S K.AKT signaling is involved in fucoidan-induced inhibition of growth and migration of human bladder cancer cells[J].Food&Chemical Toxicology,2014,64(2):344-352

[43]Han M H,Lee D,Jeong J,et al.Fucoidan Induces ROS-Dependent Apoptosis in 5637 Human Bladder Cancer Cells by Downregulating Telomerase Activity via Inactivation of the PI3K/Akt Signaling Pathway[J].Drug Dev Res,2017,78(1):37-48

[44]Chen M C,Hsu W L,Hwang P A,et al.Low Molecular Weight FucoidanInhibitsTumorAngiogenesisthrough Downregulation of HIF-1/VEGF Signaling under Hypoxia[J].Marine Drugs,2015,13(7):4436-4451

[45]Vishchuk O S,Ermakova S P,Zvyagintseva T N.The fucoidans from brown algae of Far-Eastern seas:Anti-tumor activity and structurefunction relationship[J].Food Chemistry,2013,141(2):1211-1217

[46]Koyanagi S,Tanigawa N,Nakagawa H,et al.Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities[J].Biochemical Pharmacology,2003,65(2):173-179

[47]Boo H J,Hong J Y,Kim S C,et al.The Anticancer Effect of Fucoidan in PC-3 Prostate Cancer Cells[J].Marine Drugs,2013,11(8):2982-2999

[48]Choo G S,Lee H N,Shin S A,et al.Anticancer Effect of Fucoidan on DU-145 Prostate Cancer Cells through Inhibition of PI3K/AktandMAPKPathwayExpression[J].MarineDrugs,2016,14(7):126.doi:10.3390/md14070126

[49]Cooper G,Hausman R.The development and causes of cancer[J].The Cell:A Molecular Approach,2007:743

[50]Fukahori S,Yano H,Akiba J,et al.Fucoidan,a major component of brown seaweed,prohibits the growth of human cancer cell lines in vitro[J].Mol Med Rep,2008,1:537-542

[51]Riou D,Colliec-Jouault S,Pinczon du Sel D,et al.Antitumor and antiproliferative effects of a fucan extracted from ascophyllum nodosum against a non-small-cell bronchopulmonary carcinoma line[J].Anticancer Res,1996,16:1213-1218

[52]Itoh H,Noda H,Amano H,et al.Antitumor activity and immunological properties of marine algal polysaccharides,especially fucoidan,prepared from Sargassum thunbergii of Phaeophyceae[J].Anticancer Res,1993,13:2045-2052

[53]Zhuang C,Itoh H,Mizuno T,et al.Antitumor active fucoidan from the brown seaweed,umitoranoo(Sargassum thunbergii)[J].Biosci Biotechnol Biochem,1995,59:563-567

[54]Ye J,Li Y,Teruya K,et al.Enzyme-digested fucoidan extracts derived from seaweed Mozuku of Cladosiphon novae-caledoniae kylin inhibit invasion and angiogenesis of tumor cells[J].Cytotechnology,2005,47:117-126

[55]Coombe DR,Parish CR,Ramshaw IA and Snowden JM:Analysis of the inhibition of tumour metastasis by sulphated polysaccharides[J].Int J Cancer,1987,39:82-88

[56]Aisa Y,Miyakawa Y,Nakazato T,et al.Fucoidan induces apoptosis of human HS-sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways[J].Am J Hematol,2005,78:7-14

[57]陈宏硕,李晓颖,冯鹏棉,等.螺旋藻多糖抗H22肿瘤作用研究[J].食品研究与开发,2008,35(5):120-123

Research Progress in the Anticancer Activity of Fucoidan

YAN Hong-xue1,SUN Zhan-yi1,ZHAO Li-li1,ZHANG Peng-peng1,LIU Xiang2
(1.State Key Laboratory of Bioactive Seaweed Substances,Qingdao Brightmoon Seaweed Group Co.,Ltd.,Qingdao 266400,Shandong,China;2.Qingdao Brightmoon Seaweed Group Co.,Ltd.,Qingdao 266400,Shandong,China)

Abstract:Fucoidan is a marine complex polysaccharide composed of fucose containing sulfuric acid.At present,the medical community is studying the various biological functions of diatomaceous polysaccharide,it has confirmed that fucoidan has multiple biological functions,such as anticancer,enhance immunity,resist thrombosis,lower blood pressure,antioxidant,anti helicobacter pylori,etc.The anticancer activity of fucoidan was reviewed and its anticancer potential was prospected.

Key words:fucoidan;fucose;biological function;anticancer;research progress

YAN Hongxue,SUN Zhanyi,ZHAO Lili,et al.Research Progress in the Anticancer Activity of Fucoidan[J].Food Research and Development,2018,39(24):197-203

闫洪雪,孙占一,赵丽丽,等.岩藻多糖的抗癌活性研究进展[J].食品研究与开发,2018,39(24):197-203

引文格式:

作者简介:闫洪雪(1988—),女(汉),工程师,硕士,研究方向:发育生物学。

基金项目:源头创新计划(应用研究专项-青年专项)(17-1-1-64-jch)

DOI:10.3969/j.issn.1005-6521.2018.24.034

收稿日期:2018-05-23