醋酸菌的营养特性分析及研究进展

李欣1,黄芳1,常旭2,廖蓓2,李志军2,陈雄1,*

(1.发酵工程教育部重点实验室,工业发酵湖北省协同创新中心,工业微生物湖北省重点实验室,湖北工业大学,湖北武汉430068;2.安琪酵母股份有限公司,湖北宜昌443003)

摘 要:醋酸菌是一种重要应用微生物,广泛应用发酵与酿造食品的生产中。相对于醋酸菌的分类鉴定和代谢特征与机制研究,营养需求研究受到的关注要少的多。然而,对营养需求的认识和理解在阐明醋酸菌生理特性和代谢特征、开展应用评价等方面都有积极的作用。该文重点对两种应用广泛的醋酸菌属(醋酸杆菌属和葡糖醋杆菌属)的碳源、氮源的营养需求及溶氧影响进行综述,并总结了这两个属的醋酸菌对维生素、有机酸、金属盐离子的需求研究进展。这将有助于对醋酸菌培养基的精确优化、营养盐的开发和改进提供理论指导。

关键词:醋酸杆菌属;葡糖醋杆菌属;碳源;氮源;溶氧

醋酸菌(acetic acid bacteria,AAB)广泛分布于自然环境中,也是发酵食品(如食醋、酒类产品、可可豆和红茶)中的一种重要微生物[1]。醋酸菌并非一个严格的微生物分类学概念,而是指能以氧气为终端电子受体,氧化糖类、糖醇类和醇类生成相应的糖醇、酮和有机酸的革兰氏阴性细菌总称[2]。第一个AAB属——醋酸杆菌属(Acetobacter spp.)是1898年由BEIJERINCK M[3]提出的。当前,已报道的AAB共16个属,84个种[4]。至2017年年底,美国国立生物技术信息中心(National Center for Biotechnology Information,NCBI)已收录公布了12个属共148个AAB菌株的基因组信息。在这些属中,由于醋酸杆菌属(Acetobacter)和葡糖醋杆菌属(Gluconacetobacter)对乙醇和乙酸的高耐受性而被广泛应用于食品工业生产和农业领域[5-8]。本文针对这两种醋酸菌的营养需求进行综述。

1 醋酸菌的一般特性

醋酸菌是革兰氏阴性或革兰氏不定型的椭圆或杆状细胞,呈单个、成对或短链状排列。醋酸菌不形成芽孢,菌体周生或端生鞭毛,因而具有运动能力。生长最优pH值是5.0~6.5,而它们能够在更低pH值(3~4)下生长[9]。除少量种属中的菌株具有一定的耐热性[10-11],绝大部分的醋酸菌最适生长温度在28℃~30℃之间。

以醋化醋酸杆菌(A.aceti)为代表的醋酸杆菌属能氧化乙酸盐和乳酸盐,能氧化乙醇产乙酸,泛醌为Q-9型[1]。以液化葡糖醋杆菌(Ga.liquefaciens)为典型菌株的葡糖醋杆菌属能氧化葡糖酸盐和醋酸盐,能氧化酒精产醋,辅酶Q为Q-10型[1]

2 醋酸菌常用的培养基

培养基是开展微生物研究的最基础的材料。不同培养基适应于不同类型微生物。对醋酸菌基本培养而言,最常用的培养基是由5%葡萄糖和1%酵母浸膏组成的葡萄糖-酵母浸膏培养基[12]。在此基础上衍生改良的葡萄糖-酵母浸膏-碳酸钙培养基、葡萄糖-酵母浸膏-蛋白胨-乙醇培养基和葡萄糖-酵母浸膏-蛋白胨-醋酸-乙醇培养基[13-15]以及酵母抽提物-蛋白胨-甘露醇培养基和麦芽提取物-酵母浸膏-乙醇培养基[16]被用于醋酸菌的分离和富集。此外,强化醋酸乙醇培养基(4%葡萄糖、1%酵母浸膏、1%蛋白胨、0.33%Na2HPO4·2H2O、0.15%柠檬酸、适量乙酸和乙醇)和 Dobereiner无氮培养基(0.06%KH2PO4、0.02%MgSO4、0.002%CaCl2、0.001%FeCl3、0.000 2%Na2MoO4、10%庶糖,pH4.5)分别适用于耐酸(醇)和固氮醋酸菌的培养[17-18]。经典的赫斯特林-施拉姆培养基(hestrinschramm,HS),组份包括2%葡萄糖、0.5%酵母浸粉、0.5%蛋白胨、0.375%Na2HPO4和0.115%柠檬酸)被用于合成细菌纤维素的醋酸菌的分离[19]。不同醋酸菌的性能具有较大的差异,往往还需要针对性的开展培养基优化工作。孙文瑛等结合Plackett-Buramn实验、最陡爬坡实验和Box-Behnken实验方法对醋杆菌1IA1的发酵产酸培养基进行优化,获得以乙醇、葡萄糖、酵母粉和乙酸为主要成分的含有金属盐的醋酸发酵培养基[20]

3 碳源

碳源和能量源是影响醋酸菌生长的关键因子。醋酸杆菌能利用糖作为碳源以支撑自身的生长代谢过程,然而,它们对糖类的利用差异既表现在种间,也反映在种内。不同菌株可转化产酸的糖类有很大的不同[21]。醋酸杆菌属(Acetobacter)和葡糖醋杆菌属(Gluconacebacter)均无法利用D-阿拉伯糖、L-鼠李糖、蜜二糖、蔗糖、棉子糖、三梨醇和己六醇。葡糖醋杆菌属能利用D-葡萄糖、D-半乳糖、D-果糖和甘油。这两个属中的部分菌株能利用L-阿拉伯糖、D-木糖和D-甘露糖。部分葡糖醋杆菌属菌株能利用L-山梨糖和D-甘露醇。部分醋酸杆菌属菌株能利用D-葡萄糖和D-半乳糖。醋酸杆菌不能利用甘油,而葡糖醋杆菌能利用。此外,一些多糖也能被葡糖醋杆菌利用[22]。醋酸杆菌能通过多条代谢途径利用糖,如磷酸己糖途径、糖酵解途径(embden-meyerhof-parnas pathway,EMP) 和 2-酮-3-脱氧-6-磷酸葡萄糖酸途径(entner-doudoroff pathway,ED)[23],但是不同种属间的醋酸菌糖代谢产能的效率不同,相对于醋酸杆菌,糖更适于作为葡糖醋杆菌属(Gluconacebacter)的碳源。

对醋酸菌而言,乙醇是一种双功能营养物质,既可以被视为生长碳源,也是产酸促进剂。王丽丽等发现乙醇对液体深层醋酸发酵工业生产菌株沪酿1.01的菌体生长有促进作用[24]。宋勇强等以提高甘肃传统食醋中的1株优势醋酸菌A3产酸量为目标,采用正交设计与人工神经网络模型相结合的方法,确定发酵初始乙醇浓度为4.2%[25]。张卫华等运用响应面法优化醋酸菌发酵条件,确定的乙醇浓度为6.1%vol[26]。一般而言,当乙醇醋酸杆菌属(Acetobacter)和葡糖醋杆菌属(Gluconacebacter)以乙醇为碳源进行生长时,其生长过程经历3个阶段。首先,乙醇能快速被氧化成乙酸,并伴随着乙酸从周质空间释放到外界环境。这一时期也被称为乙醇氧化期。随后,醋酸菌进入生长稳定期,其可育细胞数减少或降低生长产率。第三个生长期为乙酸氧化期,期间乙酸在细胞质内被可溶性乙醇脱氢酶(alcoho dehydrogenase,ADH)和乙醛脱氢酶(aldehyde dehydrogenase,ALDH)分解,同时伴随能量的产生和碳源的同化作用[27]

相对于醋酸杆菌属,葡糖醋杆菌属具有更多样化的功能和作用,如固氮作用、合成纤维素、生产水溶性棕色素[28-31]。葡萄醋杆菌属在可利用碳源上展现了多样性。Singh等针对Gluconacetobacter xylinus C18,基于中心复合旋转设计的响应面优化方法建立了以糖蜜(10.77%)和玉米浆(12.47%)为主的培养基,其最大细菌纤维素产量达到4.34 g/L[32]。Bilgi E等通过PB(Plackett-Burman)和中心组合设计获得一个以糖蜜和玉米浆为主营养的产细菌纤维素(4.24 g/L)的发酵体系[33]。除葡萄糖外,乙酸和乳酸也可作为额外的碳源以支撑葡糖醋杆菌的生长和细菌纤维素的生产[34]。此外,一些工业和农业废弃物,如发酵废液和腐烂的水果,也被作为糖醋杆菌合成细菌纤维素的营养组分[35-36]

4 氮源

氮源是培养基中重要营养组分,对维持醋酸菌代谢具有重要作用,如醋酸菌催化乙醇转化乙酸的代谢过程中会消耗氨基酸[37]。大部分醋酸菌能够使用无机氮源硫酸铵作为唯一氮源,因为它们能利用氨合成所有氨基酸[38-39]。培养基中的自由氨基酸是AAB很好的氮源[40-41]。20种氨基酸混合物能替代水解酪蛋白用于弱氧化醋杆菌(Acetobacter suboxydans)的生长[42]。为避免配制培养基的麻烦,往往在培养基中使用蛋白胨或酵母浸粉,它们能确保为醋酸菌的生长提供一个总量的氮源。

醋酸菌对氨基氮源的需求极大的受到菌株和使用培养条件的影响[43]。早期文献报道缬氨酸对弱氧化醋酸杆菌(Acetobacter suboxydans)的生长是必需的,而且,缬氨酸、异亮氨酸、丙氨酸和组氨酸是满足该菌生长的最小氨基酸组合,尽管增加这些氨基酸的浓度并不会显著促进生长,但减少将会导致生长能力显著降低[44]。然而,Kerwar等的研究却显示不一致的结果。他们认为缬氨酸对弱氧化醋酸杆菌的生长有抑制作用,但是添加异亮氨酸能消除缬氨酸所引起的生长抑制效应[45]。Belly和Claud在分析弱氧化醋酸杆菌ATCC 621的营养需求时,指出在一个全合成的不含氨基酸的培养基中添加谷氨酸、谷氨酰胺、脯氨酸和组氨酸能刺激生长,而甘氨酸的促生长能力较弱[46]。苏氨酸和高丝氨酸对醋化醋杆菌(Acetobacter aceti)的生长有抑制效应[47]。Sainz研究了两株苹果醋杆菌(A.malorum)对氨基酸和铵盐需求特征,结果显示以M9培养基为对照,添加脯氨酸能明显促进苹果醋杆菌1437和7742的生长,同时,丙氨酸只对菌株7742有显著的促生长效果。此外,这两个醋酸菌在谷氨酸、谷氨酰胺或丝氨酸存在下还具有大部分生长能力,但是在单一铵离子条件下的生长能力非常弱[48]。Yin等以巴氏醋酸杆菌(Acetobacter pasteurianus)AC2005为研究对象,从16种氨基酸中筛选出3种对细菌生长有显著促进作用的3种氨基酸(天冬氨酸、谷氨酸和脯氨酸),并重点研究了前两种氨基酸的促生长效果。细菌生长、可培养细菌数、乙酸产量和乙酸生产速率分别提高了1.04、5.43、1.45、3.30 倍;添加谷氨酸后,这些指标分别增长 0.51、0.72、0.60、0.94 倍[49]

5 溶氧

醋酸菌通过不完全氧化过程(也称为氧化发酵)利用细胞膜结合的脱氢酶在周质空间内将底物氧化成产物(一般为酸)[50]。以辅酶Q为主体的电子传递链负责将电子从底物转移到最终的电子受体氧分子上[51-54]。因此,氧是氧化发酵完成必不可少的重要营养因子。氧气的可利用程度会严重影响发酵速率和产率[55-57]。同时,溶氧不足也会导致醋酸菌从可培养状态转变为存活但不可培养状态(viablebutnon-culturable,VBNC)[58],这将严重影响了醋酸菌的筛选、培养和发酵研究开展。还有研究表明溶氧水平对葡糖醋杆菌G.xylinus形成的细菌纤维素的晶体构型、厚度和性能均产生影响[59]

6 其它营养需求

醋酸杆菌属(Acetobacter)和葡糖醋杆菌属(Gluconacebacter)能氧化乙酸和乳酸形成二氧化碳和水。乙酸是一个双功能营养物质,既可以作为碳源,也可以作为培养基的缓冲体系。当作为营养因子时,高浓度的乙酸并不抑制醋酸菌的生长,但过量的乙酸(15 mol/L,pH值=1.8)会限制细菌的生长[60]。适量的丙酸也具有促进作用,但盐酸和磷酸等无机酸及乳酸并不具有相似的功能[61]。培养基缓冲能力和离子强度对G.xylinus BCRC12334固态发酵生产细菌纤维素有显著的影响,200 mmol/L pH 4.75乙酸缓冲培养基中的细菌纤维素产量为3.56 g/L,远高于葡萄糖-酵母浸粉-蛋白胨培养基(2%葡萄糖、0.5%酵母浸粉和0.5%蛋白胨)(0.66 g/L)和 HS培养基(1.23 g/L)[62]。此外,柠檬酸也常被作用缓冲溶剂用于木醋杆菌(Acetobacter xylinum)的培养中[63]

醋酸菌对维生素的需求研究受到的关注极少,只有零星片段的研究报告。生黑醋杆菌(Acetobacter melanogenum),氧化醋杆菌(Acetobacter oxygans)和恶臭醋杆菌(Acetobacter rancens)都要求泛酸(pantothenic acid,维生素 B5)、烟酸(nicotinic acid),但氧化醋杆菌不需要硫铵(Thiamin,维生素 B1[64]

醋酸菌对金属盐的需求没有系统的研究结果报告。在一些情况下,碳酸钙通常作为pH调节剂而被使用。磷酸盐也被作为醋酸菌的营养成分之一[65]

7 结论

从第一例醋酸菌被发现以来,筛选获得的醋酸菌菌株数量急剧增加,种属得到极大扩展,作用功能也越来越丰富。研究者已经设计出了多种适用于不同研究目的的培养基,但是它们仅能满足醋酸菌基本的生长要求。同时,醋酸菌营养需求的研究主要集中于廉价碳源的筛选和发酵效果评价及氨基氮源的生理功能,而对微量元素,如维生素和金属盐的研究极少收到关注。然而,不同种属、不同菌株在不同的应用条件所需要的营养需求都有差异。因此,更精细的揭示营养元素对醋酸菌的影响和作用机制,深入到基因表达调控、蛋白表达差异和代谢等水平,更有助于理解醋酸菌的多样性、差异性和独特性[66]

醋酸是一种重要的有机化工产品,在化工、轻纺、塑料、医药、橡胶以及染料等行业有着十分广泛的用途[67]。同时,食醋是人们在日常生活中广泛食用的调味品。利用醋酸菌转化食用酒精是高浓度食醋的主要生产方法。开发低成本高效率的醋酸发酵营养盐是醋酸菌研究的重要方向,如江南大学研发了由水解酵母粉(26.5%)、柠檬酸铵(15.5%)、葡萄糖(44.8%)、磷酸氢二钾(4.2%)和磷酸氢二钠(3.7%)组成的醋酸菌发酵营养盐[68]。目前,中国市场上应用最广泛的醋酸菌培养基是进口德国的弗林斯醋酸菌发酵营养盐,主要由酵母浸出物、无机盐和生长因子等物质复配得到,虽然使用方便,但价格昂贵。中国最大的酵母制造商安琪酵母有限公司也开发出用于液态米醋发酵和酒精醋发酵的3种型号营养盐。然而,相比进口产品,在促生长和促代谢方面,国产营养盐还存在微弱的差异与不足。因此,基于醋酸菌营养需求特征,开展精细化改进和优化是未来营养盐研究的重要方向。

参考文献:

[1]王斌,陈福生.醋酸菌的分类进展[J].中国酿造,2014,33(12):1-10

[2]Matsushita K,Inoue T,Adachi O,et al.Acetobacter aceti possesses a proton motive force-dependent efflux system for acetic acid[J].Journal of Bacteriology,2005,187(13):4346-4352

[3]Beijerinck M.Ueber die arten der essigbakterien[J].Centralblatt für Bakteriologie,ParasitenkundeundInfektionskrankheiten,1898,2(4):209-216

[4]Wang B,Shao YC,Chen FS.Overview on mechanisms of acetic acid resistance in acetic acid bacteria[J].World Journal of Microbiology and Biotechnology,2015,31(2):255-263

[5]PedrazaRO.Recentadvancesinnitrogen-fixingaceticacidbacteria[J].International Journal of Food Microbiology,2008,125(1):25-35

[6]Kersters K,Lisdiyanti P,Komagata K,et al.The prokaryotes[M].New York:Springer,2016:163-200

[7]Czaja W,Young D,Kawecki M,et al.The future prospects of microbial cellulose in biomedical applications[J].Biomacromolecules,2007,8:1-12

[8]Gullo M,Verzelloni E,Canonico M.Acetic submerged fermentation by acetic acid bacteria for vinegar production:process and biotechnological aspects[J].Process Biochemistry,2014,49:1571-1579

[9]SieversM,SwingsJ.FamilyAcetobacteraceae[M].NewYork:Springer,2005:41-95

[10]Saeki A,Theeragol G,Matsushita K,et al.Development of thermotolerant acetic acid bacteira useful for vinegar fermentation at higher temperatures[J].Bioscience Biotechnology and Biochemistry,1997,61:138-145

[11]Ndoye B,Lebecque S,Dubois-Dauphin R,et al.Thermoresistant properties of acetic acids bacteria isolated from tropical products of Sub-Saharan Africa and destined to industrial vinegar[J].Enzyme and Microbial Technology,2006,39:916-923

[12]Entani E,Ohmori S,Masai H,et al.Acetobacter polyoxogenes sp.nov.,a new species of an acetic acid bacterium useful for producing vinegar with high acidity[J].Journal of General and Applied Microbiology,1985,31(5):475-490

[13]Gullo M,Mamlouk D,De Vero L,et al.Acetobacter pasteurianus strain AB0220:cultivability and phenotypic stability over 9 years of preservation[J].Current Microbiology,2012,64(6):576-580

[14]Cirigliano MC.A selective medium for the isolation and differentiation of Gluconobacter and Acetobacter[J].Journal of Food Science,1982,47:1038-1039

[15]Yamada Y,Hosono R,Lisdyanti P,et al.Identification of acetic acid bacteria isolated from Indonesian sources,especially of isolates classified in the genus Gluconobacter[J].Journal of General and Applied Microbiology,1999,45(1):23-28

[16]Gullo M,Caggia C,De Vero L,et al.Characterization of acetic acid bacteria in traditional balsamic vinegar[J].International Journal of Food Microbiology,2006,106:209-212

[17]Schuller G,Hertel C,Hammes WP.Gluconacetobacter entanii sp.Nov.,isolated from submerged high-acid industrial binegar fermentations[J].International Journal of Systematic and Evolutionary Microbiology,2000,50:2013-2020

[18]Dutta D,Gachhui R.Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp.nov.,isolated from Kombucha tea[J].International Journal of Systematic and Evolutionary Microbiology,2007,57(2):353-357

[19]Hestrin SSM.Synthesis of cellulose by Acetobacter xylinum.2.Preparation of freeze-dried cells capable of polymerizing glucose to cellulose[J].Biochemical Journal,1654,58:345-352

[20]孙文瑛,陈雄,石勇,等.响应面法优化醋酸菌的发酵产酸培养基[J].化学与生物工程,2011,28(1):37-41

[21]Dhouha M,Maria G.Acetic acid bacteria:Physiology and carbon sources oxidation[J].Indian Journal of Microbiology,2013,53(4):377-384

[22]Huang C,Guo HJ,Xiong L,et al.Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus[J].Carbohydrate Polymers,2016,136:198-202

[23]Attwood M,van Dijken JP,Pronk JT.Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus[J].Journal of Fermentation and Bioengineering,1991,72(2):101-105

[24]王丽丽,仪宏,沙惠琴,等.醋酸菌生长的营养需求及产酸的促进作用研究[J].中国调味品,2004,304(6):3-6

[25]宋勇强,贠建民,安志刚,等.基于正交设计与人工神经网络模型的醋酸菌A3菌株醋酸发酵条件优化[J].食品工业科技,2013(5):142-146,150

[26]张卫华,汪超,罗军杰,等.响应面优化醋酸菌发酵条件研究[J].中国酿造,2012,31(4):48-51

[27]Matsushita K,Toyama H,Adachi O.Respiration in Archaea and Bacteria,Advances in photosynthesis and respiration[M].Dordrecht:Springer,2004:81-99

[28]Hungund BS,Gupta S.Improved production of bacterial cellulose from Gluconacetobacter persimmonis GH-2[J].Journal of Microbial and Biochemical Technology,2010,2(5):127-133

[29]Shridhar BS.Review:nitrogen fixing microorganisms[J].International Journal of Microbiology Research,2012,3(1):46-52

[30]Franke IH,Fengan M,Hayward C,et al.Description of Gluconacetobacter sacchari sp.nov.,a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugarcane mealy bug[J].International Journal of Systematic and Evolutionary Microbiology,1999,49(4):1681-1693

[31]Fuentes-Ramírez LE,Bustillos-Cristales R,Tapia-Hernández A,et al.Novel nitrogen-fixing acetic acid bacteria,Gluconacetobacter johannae sp.nov.and Gluconacetobacter azotocaptans sp.nov.,associated with coffee plants[J].International Journal of Systematic and Evolutionary Microbiology,2001,51(4):1305-1314

[32]Singh O,Panesar PS,Chopra HK.Response surface optimization for cellulose production from agro industrial waste by using new bacterial isolate Gluconacetobacter xylinus C18[J].Food Science and Biotechnology,2017(5):1-10

[33]Bilgi E,Bayir E,Sendemir-Urkmez A,et al.Optimization of Bacterial Cellulose Production by Gluconacetobacter xylinus using Carob and Haricot Bean[J].International Journal of Biological Macromolecules,2016,90:2-10

[34]Yassine F,Bassil N,Flouty R,et al.Culture medium pH influence on Gluconacetobacter physiology:Cellulose production rate and yield enhancement in presence of multiple carbon sources[J].Carbohydrate Polymers,2016,146:282-291

[35]Wu Jyhming,Liu Renhan.Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus[J].Carbohydrate Polymers,2012,90(1):116-121

[36]Jozala AF,Pértile RA,dos Santos CA,et al.Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culturemedia[J].Applied Microbiology and Biotechnology,2015,99(3):1181-1190

[37]Callejón R,Troncoso A,Morales M.Determination of amino acids in grape-derivedproducts:areview[J].Talanta,2010,81(4):1143-1152

[38]DrysdaleGS,FleetH.Aceticacidbacteriainwinemaking:areview[J].American Journal of Enology and Viticulture,1988,39:13-154

[39]Maestre O,Santos-Duenas IM,Peinado R,et al.Changes in amino acid composition during wine vinegar production in a fully automatic pilot acetator[J].Process Biochemistry,2008,43:803-807

[40]Merrick MJ,Edwards RA.Nitrogen control in bacteria[J].Microbiological Reviews,1995,59(4):604-622

[41]Ordóñez JL,Sainz F,Callejón RM,et al.Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile[J].Food Chemistry,2015,178:221-228

[42]Underkolfer LA,Bantz AC,Peterson WH.Growth factors for bacter:XVI.Growth requirements of Acetobacter suboxydans[J].Journal of Bacteriology,1943,45(2):183-190

[43]Brown GD,Rainbow C.Nutritional patterns in acetic acid bacteria[J].Journal General Microbiology,1956,15(1):61-69

[44]Stokes JL,Larsen A.Amino acids requirements of Acetobacter suboxydans[J].Journal of Bacteriology,1945,49:495-501

[45]Kerwar SS,Cheldelin VH,Parks LW.Valine-Isoleucine metabolism in Acetobacter suboxydans and the inhibition of growth by valine[J].Journal of Bacteriology,1964,88:179-186

[46]Belly RT,Claud GW.Effect of amino acid on the growth of Acetobacter suboxydans[J].Archives of Microbiology,1972,83:237-245

[47]O’Sullivan J.Growth inhibition of Acetobacter aceti by L-threonine and L-homoserine:the primary regulation of the biosynthesis of amino acids of the aspartate family[J].Journal General Microbiology,1974,85(1):153

[48]Sainz F,Mas A,Torija MJ.Effect of ammonium and amino acids on the growth of selected strains of Gluconobacter and Acetobacter[J].International Journal of Food Microbiology,2017,242:45-52

[49]Yin HS,Zhang RK,Xia ML,et al.Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus[J].Microbial Cell Factories,2017,16:109-122

[50]Natsaran S,Kazunobu M,Osao A,et al.Acetic acid bacteria:A group of bacteria with versatile biotechnological applications[J].Biotechnology Advances,2015,33(2):1260-1271

[51]Adachi O,Ano Y,Toyama H,et al.Modern biooxidation:enzymes,reactions and applications[M].Weinheim:Wiley,2007:1-41

[52]MiuraH,MogiT,AnoY,etal.Cyanide-insensitivequinoloxidase(CIO)from Gluconobacter oxydans is a unique terminal oxidase sub-family of cytochrome bd[J].Journal of Biochemistry,2013,153(6):535-545

[53]Mamlouk D,Gullo M.Acetic acid bacteria:physiology and carbon sources oxidation[J].Indian Journal of Microbiology,2013,53(4):377-384

[54]Matsutani M,Fukushima K,Kayama C,et al.Replacement of a terminal cytochrome c oxidase by ubiquinol oxidase during the evolution of acetic acid bacteria[J].Biochimica Et Biophysica ACTA Bioenergetics,2014,1837:1810-1820

[55]David Laureys,Maarten Aerts,Peter Vandamme,et al.Oxygen and diverse nutrients influence the water kefir fermentation process[J].Food Microbiology,2018,73:351-361

[56]Qi Z,Yang H,Xia X,et al.A protocol for optimization vinegar fermentation according to the ratio of oxygen consumption versus acid yield[J].Journal of Food Engineering,2013,116(2):304-309

[57]Schlepütz T,Gerhards JP,Büchs J,et al.Ensuring constant oxygen supply during inoculation is essential to obtain reproducible results with obligatory aerobic acetic acid bacteria in vinegar production[J].Process Biochemistry,2013,48(3):398-405

[58]Millet V,Lonvaud-Funel A.The viable but non-culturable state of wine microorganisms during storage[J].Letters in Applied Microbiology,2000,30(2):136-141

[59]Nagashima A,Tsuji T,Kondo T.A uniaxially oriented nanofibrous cellulose scaffold from pellicles produced by Gluconacetobacter xylinus in dissolved oxygen culture[J].Carbohydrate Polymers,2016,135:215-224

[60]Yassine F,Bassil N,Flouty R,et al.Culture medium pH influence on Gluconacetobacter physiology:Cellulose production rate and yield enhancement in presence of multiple carbon sources[J].Carbohydrate Polymers,2016,146:282-291

[61]孙文瑛,陈雄,石勇,等.响应面法优化醋酸菌的发酵产酸培养基[J].化学与生物工程,2011,28(1):37-41

[62]Kuo CH,Chen JH,Liou BK,et al.Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus[J].Food Hydrocolloids,2016,53:98-103

[63]Hestrin S,Schramm M.Synthesis of cellulose by Acetobacter xylinum.2.Preparation of freeze-dried cells capable of polymerizing glucose to cellulose[J].Biochemical Journal,1954,58:345-352

[64]Foda IO,Vaugen RH.The nutritional requirements of Acetobacter melanogenum and related species[J].Journal of Bacteriology,1953,65(1):79-82

[65]Bilgi E,Bayir E,Sendemir-Urkmez A,et al.Optimization of Bacterial Cellulose Production by Gluconacetobacter xylinus using Carob and Haricot Bean[J].International Journal of Biological Macromolecules,2016,90:2-10

[66]张志燕,马海乐,杨艳华.蛋白质组学及其在醋酸菌研究中的应用[J].食品科学,2016(5):259-264

[67]晓铭.我国醋酸的市场分析[J].乙醛醋酸化工,2015(10):7-11

[68]杨海麟,张玲,夏小乐,等.一种醋酸菌发酵营养盐及其使用方法:2010105100845[P].2012-10-15

The Status and Analysis of the Nutritional Characteristics of Acetic Acid Bacteria

LI Xin1,HUANG Fang1,CHANG Xu2,LIAO Bei2,LI Zhi-jun2,CHEN Xiong1,*
(1.Key Laboratory of Fermentation Engineering(Ministry of Education),Hubei Provincial Cooperative Innovation Center of Industrial Fermentation,Hubei Key Laboratory of Industrial Microbiology,Hubei University of Technology,Wuhan 430068,Hubei,China;2.Angel Yeast Co.,Ltd.,Yichang 443003,Hubei,China)

Abstract:Acetic acid bacteria are an important applied microorganism,which was widely used in the production of fermented and fermented food.Compared with the classification,identification,metabolic characteristics and mechanisms of acetic acid bacteria,litter attention has been paid to the study of nutritional requirements.However,the knowledge and understanding of nutritional requirements play a positive role in elucidating the physiological characteristics and metabolic characteristics of acetic acid bacteria,as well as its application and evaluation.This paper focused on two kinds of widely used acetic acid bacteria(Acetobacter and Gluconacetobacter genus),reviewed the nutritional requirements of carbon source and nitrogen source and the effect of dissolved oxygen,and summarizes the research progress of the two genera of acetic acid bacteria on demand for vitamins,organic acids,and metal ions.This review will provide theoretical guidance for the precise optimization of culture medium and the development and improvement of nutrient salts.

Key words:Acetobacter;Gluconacetobacter;carbon source;nitrogen source;dissolved oxygen

引文格式:李欣,黄芳,常旭,等.醋酸菌的营养特性分析及研究进展[J].食品研究与开发,2018,39(15):219-224

LI Xin,HUANG Fang,CHANG Xu,et al.The Status and Analysis of the Nutritional Characteristics of Acetic Acid Bacteria[J].Food Research and Development,2018,39(15):219-224

DOI:10.3969/j.issn.1005-6521.2018.15.042

作者简介:李欣(1980—),男(汉),讲师,博士,研究方向:醋酸菌开发与应用。

*通信作者:陈雄(1969—),男(汉),教授,博士,研究方向:酿造微生物。

收稿日期:2018-01-23