β-葡聚糖是酵母细胞壁多糖的主要成分,在细胞壁的最内层,属于结构多糖,主要生理功能是维持细胞壁机械强度,使细胞保持正常生理形态。在20 世纪40 年代,Pillemer 等[1]在酵母细胞壁中发现了一种能提高免疫力的物质;1961 年,图伦大学Diluzio 和Riggi博士确定了酵母聚糖中的这种活性成分是β-葡聚糖[2]。酵母β-葡聚糖由葡萄糖组成,化学结构以β-1,3-D-葡聚糖为主链,β-1,6-D-葡聚糖为支链(如图1 所示),分子量为20~4 000 kDa[3-4],在酵母细胞壁中占干重的30%~35%。我国于2010 年将酵母β-葡聚糖纳入新食品原料名单中,食用量不超过250 mg/d,并于2012 年将其作为营养强化剂添加至较大婴儿配方乳粉[5]。此外,酵母β-葡聚糖已经在美国、欧盟等地通过安全性审查。例如,酵母β-葡聚糖被美国食品药品监督管理局于2009 年被批准为“公认安全(Generally Recognized as Safe,GRAS)”(GRN No. 239),可以应用到焙烤食品、饮料、乳制品等各种食品,每份添加量不超过200 mg;欧盟在2011 年将酵母β-葡聚糖批准为新型食品配料(2011/762/EU)。
图1 酵母细胞壁内的β-葡聚糖及其结构示意图
Fig.1 β-Glucan in yeast cell wall and schematic diagram of its structure
a.酵母细胞壁组成;b.酵母β-葡聚糖结构示意图。
目前酵母β-葡聚糖来源广泛,商业上通常以酿酒酵母(面包酵母)为原料经提取、酸碱处理、喷雾干燥等步骤制备。除了酿酒酵母,马克斯克鲁维酵母和克鲁维毕赤酵母分别于2013 年和2024 年获批为可用于食品的菌种,其中马克斯克鲁维酵母生长速度快,具有抗氧化成分,是一种潜在的β-葡聚糖提取原料[6]。Vaithanomsat 等[7]研究发现马克斯克鲁维酵母来源的β-葡聚糖和市售酵母β-葡聚糖一样可以作为潜在聚合物材料;陈成[8]发现来源于马克斯克鲁维酵母的β-葡聚糖对二苯代苦味肼基自由基、羟自由基和超氧阴离子自由基都有较强的清除作用,从而显示出抗氧化活性。
β-葡聚糖具有多种功能活性,例如免疫调节、改善肠道健康、调节糖脂代谢、抗氧化等。随着“健康中国2030”规划进入全面实施阶段,酵母β-葡聚糖因显著的免疫调节和益生元功效逐渐走进大众的视野中。酵母β-葡聚糖可被免疫细胞表面的模式识别受体识别,能激活体内的免疫效应;调节肠道菌群,促进肠道免疫,能够被特定的肠道菌群利用并代谢,以及通过调节肠道菌群及其代谢产物对机体健康产生积极影响[9]。
1.1.1 调节免疫功能、促进肠道免疫
酵母β-葡聚糖是一种天然的免疫调节剂,其免疫调节机制包括与免疫细胞发生特异性结合、刺激免疫细胞等发挥对机体的免疫活性[10-11]。酵母β-葡聚糖到达肠道后被佩耶氏斑(Peyer′s patches)微绒毛上巨噬细胞表达的模式识别受体(pattern recognition receptors,PRRs )结合、内化[12-13];然后被受体识别后将信号传导至人外周血单核细胞(human peripheral blood mononuclear cell,PBMCs),其中树凝素-1(dectin-1)和补体受体3(complement receptor 3,CR3)是免疫细胞识别酵母β-葡聚糖产生吞噬作用的两种主要受体;最后,PBMCs 中的吞噬溶酶体接受传导信号后依赖还原型烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate,NADPH)氧化酶消耗大量氧气产生氧化爆发,从而有效杀灭其吞噬的病原体[14-17]。有研究证实抗原呈递细胞与酵母β-葡聚糖特异性结合后被其表达的dectin-1 分子识别并吞噬,由此激活下游NF-κB 通路,通过促进肿瘤坏死因子-α(tumor necrosis factor,TNF-α)、白细胞介素-6(interleukin-6,IL-6)等炎症因子的分泌介导免疫应答[18]。赵文婷等[19]通过斑马鱼巨噬细胞吞噬功能模型,发现酵母β-葡聚糖能显著促进巨噬细胞形成和提升其吞噬功能。Lee等[20]发现酵母β-葡聚糖通过诱导γ-干扰素(interferonγ,IFN-γ)产生Th1 细胞分化来促进免疫反应。朱娅敏等[21]发现酵母β-葡聚糖能够显著增强小鼠自然杀伤细胞(natural killer cell,NK)活性。此外,越来越多的研究表明酵母β-葡聚糖可以“训练”先天免疫细胞,从而改变单核细胞和巨噬细胞前体生物学以产生更有效的免疫反应[22]。Vuscan 等[23]发现酵母β-葡聚糖能够促进人原代单核细胞产生“训练免疫”,从而在非特异性免疫中产生有效的先天宿主反应。
酵母β-葡聚糖除了能够激活中性粒细胞和吞噬细胞,进一步激活和影响免疫神经内分泌调节网络之外,还具有促进肠道免疫系统的功能[24]。Wang 等[25]发现注射酵母β-葡聚糖能够通过增强珍珠龙胆石斑鱼的NF-κB 信号通路来提高肠道免疫能力。Carballo等[26]发现酵母β-葡聚糖能够上调鱼肠道白细胞介素-1β(interleukin-1β,IL-1β)和干扰素调节因子7(interferon regulatory factor 7,IRF-7)表达,并降低肠道中弧菌等有害菌的比例,改善鱼类的肠道免疫。Wang 等[27]研究发现酵母β-葡聚糖能够显著提高IFN-γ 和IL-6浓度、促进淋巴细胞增殖,同时增加肠道中双歧杆菌和乳酸菌等益生菌丰度,促进肠道免疫系统的功能。
1.1.2 提高机体免疫力,抑制过高免疫应答
儿童由于免疫系统发育不完全,易受上呼吸道疾病感染,而每日补充酵母β-葡聚糖能够显著提高儿童的免疫力,降低感冒发病率和缩短持续时间。在对儿童慢性呼吸道感染疾病的临床实验研究中发现,短期口服酵母β-葡聚糖能够显著增加患病儿童唾液中白蛋白、溶菌酶和免疫球蛋白A(immunoglobulin A,IgA)水平,调节儿童的黏膜免疫功能,明显缩短儿童慢性呼吸道疾病的病程[28-29]。Meng[30]发现补充酵母β-葡聚糖一段时间后能够使上呼吸道疾病易感儿童的普通感冒发病率和持续时间减少66%。此外,也有临床实验表明酵母β-葡聚糖能够改善因过度运动导致的免疫力下降,例如,马拉松运动员在跑完马拉松的4 周后每天服用250 mg 或500 mg 酵母β-葡聚糖能显著减少呼吸道感染症状[31]。
当机体的免疫应答超出正常范围,人体自身正常的细胞或组织受到攻击,称之为变态反应,临床上常见的相关疾病有过敏性鼻炎、过敏性哮喘等[32]。酵母β-葡聚糖能够显著影响辅助性T 细胞(Th1 和Th2 细胞)的免疫反应,释放出白细胞介素和转化生长因子等抗炎细胞因子,从而有效抑制过敏反应[33]。Talbott 等[34]通过分析48 名花粉过敏性鼻炎志愿者(酵母β-葡聚糖和安慰剂受试者各24 名)血清中免疫球蛋白E 等指标,发现酵母β-葡聚糖组补充250 mg/d,连续4 周可以改善过敏症状。Jesenak 等[33]探究酵母β-葡聚糖对过敏性鼻炎患者的影响,发现长期服用后体内的Th1 细胞表达的白细胞介素-12 增加,Th2 细胞表达的白细胞介素-4 和白细胞介素-5 显著减少,同时嗜酸性粒细胞减少,从而减轻过敏性鼻炎症状。
1.2.1 调节肠道菌群,改善肠道健康
酵母β-葡聚糖可以抵抗一定程度胃酸和消化酶的水解,增强肠道蠕动。同时被肠道菌群吸收、代谢,通过改善宿主肠道菌群及其代谢产物来调节机体糖脂代谢,表现出益生元效益[4,35-36]。酵母β-葡聚糖还可以提高肠道表面免疫球蛋白A 的分泌,调节激素和细胞因子等信号分子的表达来改善宿主肠道健康[37]。
Han 等[24]发现口服酵母β-葡聚糖可显著缓解葡聚糖硫酸钠(dextran sulfate sodium salt,DSS)诱导结肠炎小鼠的炎症浸润和细胞凋亡,改善肠道通透性和紧密连接结构的完整性。Li 等[38]发现酵母β-葡聚糖可以促进短链脂肪酸的生成,降低拟杆菌等有害菌丰度,增加乳酸菌等有益菌群丰度。孙运红等[39]发现酵母β-葡聚糖可能通过抑制NF-κB/NLRP3 信号通路调节肠道免疫稳态,恢复厚壁菌门与拟杆菌门的比例,增加乳杆菌和阿克曼菌等益生菌的丰度,恢复肠黏膜屏障功能,从而达到改善结肠炎的功能。Wang 等[35]发现酵母β-葡聚糖通过抑制厚壁菌门和拟杆菌门等有害菌丰度,增加双歧杆菌等益生菌生长,具有和菊粉类似的益生元活性。此外,酵母β-葡聚糖还能够促进肠道蠕动,提高肠道交换物质速率,吸附霉菌毒素来促进肠道健康,其主要机制如下。1)酵母β-葡聚糖可以通过竞争性抑制位于大肠杆菌菌毛尖端的细菌黏附素来抑制大肠杆菌与肠道内壁的附着;2)调节肠上皮内神经递质和紧密连接蛋白的表达来对抗病原菌,从而加强肠道机械屏障并维持黏膜完整性;3)低分子量酵母β-葡聚糖能够穿透微生物细胞壁并破坏细胞代谢,减少外来有害菌的比例[40-42]。
1.2.2 调节糖、脂代谢,改善代谢综合征
酵母β-葡聚糖能够调节肠道微生态来预防代谢综合征,有效保护和修复胰岛β 细胞、改善胰岛素抵抗。曹燕等[43-44]发现酵母β-葡聚糖可以调节肥胖和2 型糖尿病小鼠肠道微生物,抑制肝脏糖异生过程和脂肪合成基因表达,改善脂肪组织微环境,并能够有效抑制肥胖和2 型糖尿病引起的肠道和脂肪组织慢性炎症。Mitchelson 等[45]发现酵母β-葡聚糖可以通过改善肠道菌群结构来增加人源化小鼠的胰岛素敏感和肝脏脂质代谢水平。Chen 等[46]研究显示酵母β-葡聚糖通过降低高脂小鼠血液中IL-6 等促炎因子水平以及降低乳杆菌属和乳球菌属等菌群的相对丰度来改善代谢综合征。另有研究也证实酵母β-葡聚糖能够通过调节肠道菌群来改善代谢综合征,包括改善体质量、脂肪堆积和肝脏的脂肪变性情况[47]。长期补充酵母β-葡聚糖可以恢复由高脂饮食引起的肠道菌群失调,能够改善大鼠体质量增加、血脂异常和全身炎症情况[48]。此外,酵母β-葡聚糖还能够通过抑制肠道中葡萄糖转运载体蛋白来减少对葡萄糖的吸收,并抑制脂肪消化和转运蛋白相关的基因表达,降低肠道脂肪的吸收和利用[46]。酵母β-葡聚糖还能促进脂蛋白和脂肪酸释放,对降低血胆固醇具有良好的改善作用[37,49]。多组临床实验也证实了酵母β-葡聚糖对不同代谢疾病的改善作用,例如Cronin 等[50]对2 型糖尿病患者进行一项随机、安慰剂探索性干预实验表明,患者服用8 周酵母β-葡聚糖后能够显著改善胰岛素抵抗;Mosikanon等[51]对44 名肥胖人群进行为期6 周的人群实验(多糖组和安慰剂组都为22 人),发现与对照组相比,酵母β-葡聚糖能够减少机体IL-6 和TNF-α 的表达,降低受试者的腰围和血压。
酵母β-葡聚糖还能通过免疫和益生元活性促进伤口愈合、改善慢阻肺症状以及认知障碍等作用。酵母β-葡聚糖能够增加巨噬细胞在创伤处的渗入,同时加强伤处的抗拉强度,从而促进伤口愈合[52]。罗珍[53]发现酵母β-葡聚糖可以通过改善肠道益生菌的种类和丰度以及影响肺组织蛋白表达,降低慢阻肺支气管组织损伤,显著改善支气管壁炎症等改善慢阻肺相关症状。张棋炜[54]发现酵母β-葡聚糖可以通过肠道菌群代谢产物影响磷脂酰肌醇3-激酶/蛋白激酶B 途径改善神经炎症反应并改善小鼠的学习记忆能力。Mo等[55]探究了长期口服酵母β-葡聚糖能够促进小鼠肠道产生短链脂肪酸来抑制神经炎症,从而减轻阿尔兹海默症的相关症状。Xu 等[56]研究发现酵母β-葡聚糖能够改变肠道菌群的组成,并通过肠-脑轴通路改善阿尔兹海默症导致的认知功能障碍。
酵母β-葡聚糖在食品领域中的应用日益广泛,不仅可以作为食品添加剂和食物组分,改善产品的质构和稳定性,还能提升产品的健康价值。酵母β-葡聚糖在食品中的应用见图2。酵母β-葡聚糖由于其增稠性和乳化性,按照适当比例加入酸奶中可作为增稠剂使用[57]。Raikos 等[58]将β-葡聚糖加入不同浓度的无脂酸奶中,当β-葡聚糖含量高达0.8%时,酸奶的理化和结构性质较好,发酵时间明显缩短了1 h。Al-Sahlany等[59]在酸奶中分别添加0.1%、0.5%、1% 酵母β-葡聚糖,发现与未添加β-葡聚糖的酸奶相比,添加0.5%和1% β-葡聚糖的生物酸奶酸度增加,脱水收缩率降低。酵母β-葡聚糖在面包、面食和饼干产品中也有潜在的应用,如在面包制作过程中加入酵母β-葡聚糖可以保持面包的感官特性。Martins 等[60]将2%左右的酵母β-葡聚糖加入面包中,烤制后会形成均匀的空隙,增加口感和营养特性。
图2 酵母β-葡聚糖在食品中的应用
Fig.2 Application of yeast β-glucan in food
酵母β-葡聚糖由于具有较好的流变性和生物相容性,可以单独或与蛋白质等生物大分子结合作为生物薄膜原料[61]。 Novák 等[62]利用20% 酵母β-葡聚糖和甘油制作不溶于水、致密、无孔薄膜,历经1 年的老化后性状几乎无变化,可作为较好食品包装材料。
酵母β-葡聚糖及其复合物的持水性和乳化性有利于肉制品促进水分的吸收,增加产品的口感,赋予食品不同风味和质构等特性。Apostu 等[63]发现1.5% 的酵母β-葡聚糖在肉制品中可以达到最佳的持水性,且可以降低产品中氯化钠的含量。张漫莉[64]研究发现在肉制品中加入β-葡聚糖或其复合物可以降低肥肉的比例及淀粉的添加量。将酵母β-葡聚糖和花生分离蛋白复合物替代20%脂肪加入香肠,持水性和质构与市售产品相当。酵母β-葡聚糖的乳化性还可以作为脂肪模拟物部分替代脂肪。Reis 等[65]研究了在蛋黄酱制作中,采用酵母β-葡聚糖取代了脂肪,相较于普通蛋黄酱,货架期更长和热量更低。
随着人们对健康的关注不断提高,尤其是在提升免疫力、预防疾病等方面的需求增加,酵母β-葡聚糖作为一种具有多种健康益处的成分,在国内外市场具有广泛的应用潜力。目前酵母β-葡聚糖相关产品已涵盖乳制品、功能性食品、保健品等,产品剂型涉及饮料、冲剂、胶囊和糖果等[35,66]。
我国的发酵饮食历史悠久,酵母资源丰富,对酵母β-葡聚糖的有效利用具有极大应用价值。酵母β-葡聚糖具有免疫调节和益生元效应等显著的功能活性,目前被用于食品添加剂、营养补充剂和药物载体等。但是对于酵母β-葡聚糖现有的开发利用仍存在一些问题。1)虽然已有较多关于酵母β-葡聚糖的动物和人群实验,但大都集中在调节免疫和糖脂代谢上,其他功能活性仍有待于深入探究。2)尽管酵母β-葡聚糖结构类似,但是由于其分子量、分支比等结构的差异使其具有不同的理化性质,因此相关的构效关系仍需揭露。3)酵母β-葡聚糖在食品领域中具有广泛的使用价值,还需进一步研究其加工和产品的适配性,以期扩大应用范围。
[1] PILLEMER L, ECKER E E. Anticomplementary factor in fresh yeast[J]. Journal of Biological Chemistry, 1941, 137(1): 139-142.
[2] DI LUZIO N R, RIGGI S J. The effects of laminarin, sulfated glucan and oligosaccharides of glucan on reticuloendothelial activity[J].Journal of the Reticuloendothelial Society, 1970, 8(5): 465-473.
[3] DONG W J, LI Y C, XUE S R, et al. Yeast polysaccharides: The environmentally friendly polysaccharides with broad application potentials[J]. Comprehensive Reviews in Food Science and Food Safety, 2024, 23(5): e70003.
[4] 王佳佳, 胡松青, 黄滟波, 等. 酵母β-葡聚糖的理化性质和体外益生元效应[J]. 中国食品学报, 2018, 18(7): 10-17.WANG Jiajia, HU Songqing, HUANG Yanbo, et al. Physicochemical properties and prebiotics effect of yeast β-glucans in vitro[J].Journal of Chinese Institute of Food Science and Technology, 2018,18(7): 10-17.
[5] 徐聪玲, 钟世欢, 张思奇, 等. 乳制品中酵母β-葡聚糖的检测方法[J]. 中国乳业, 2023(7): 94-98.XU Congling, ZHONG Shihuan, ZHANG Siqi, et al. Determination of yeast β-glucan in dairy products[J]. China Dairy, 2023(7): 94-98.
[6] 陈成, 汪洪涛, 陈宝宏, 等. 马克斯克鲁维酵母发酵产β-葡聚糖工艺优化[J]. 食品工业, 2015, 36(1): 133-136.CHEN Cheng, WANG Hongtao, CHEN Baohong, et al. Optimization of production process of β-glucans from Kluyveromyces marxianus[J]. The Food Industry, 2015, 36(1): 133-136.
[7] VAITHANOMSAT P, BOONLUM N, TRAKUNJAE C, et al. Functionality of yeast β-glucan recovered from Kluyveromyces marxianus by alkaline and enzymatic processes[J]. Polymers, 2022, 14(8):1582.
[8] 陈成. 马克斯克鲁维酵母产β-葡聚糖生物活性研究[J]. 食品工业, 2016, 37(7): 68-71.CHEN Cheng. Biological activity of β-glucans from Kluyveromyces marxianus[J]. The Food Industry, 2016, 37(7): 68-71.
[9] LIU Y N, WU Q, WU X Y, et al. Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall:A review[J]. International Journal of Biological Macromolecules,2021, 173: 445-456.
[10] 郭永, 王振伟. 酵母β-葡聚糖的生物活性及开发利用[J]. 中国食物与营养, 2010, 16(9): 24-26.GUO Yong, WANG Zhenwei. Bioactive function of yeast β-glucan and its application[J]. Food and Nutrition in China, 2010, 16(9): 24-26.
[11] HORNECK JOHNSTON C J H, LEDWITH A E, LUNDAHL M L E,et al. Recognition of yeast β-glucan particles triggers immunometabolic signaling required for trained immunity[J]. iScience, 2024, 27(3): 109030.
[12] VOLMAN J J, RAMAKERS J D, PLAT J. Dietary modulation of immune function by β-glucans[J]. Physiology & Behavior, 2008, 94(2): 276-284.
[13] GANDA MALL J P, CASADO-BEDMAR M, WINBERG M E, et al.A β-glucan-based dietary fiber reduces mast cell-induced hyperpermeability in ileum from patients with Crohn′s disease and control subjects[J]. Inflammatory Bowel Diseases, 2017, 24(1): 166-178.
[14] GOODRIDGE H S, REYES C N, BECKER C A, et al. Activation of the innate immune receptor dectin-1 upon formation of a ′phagocytic synapse′[J]. Nature, 2011, 472: 471-475.
[15] BOSE N, WURST L R, CHAN A S H, et al. Differential regulation of oxidative burst by distinct β-glucan-binding receptors and signaling pathways in human peripheral blood mononuclear cells[J].Glycobiology, 2014, 24(4): 379-391.
[16] SCHITTENHELM L, HILKENS C M, MORRISON V L. β2 Integrins as regulators of dendritic cell, monocyte, and macrophage function[J]. Frontiers in Immunology, 2017, 8: 1866.
[17] LIU X Y, SHI Y T, LIU R, et al. Structure of human phagocyte NADPH oxidase in the activated state[J]. Nature, 2024, 627(8002):189-195.
[18] 白煜, 戚春建, 夏蕾, 等. 基于酵母β-葡聚糖载体的口服OVA疫苗(WGP-OVA 疫苗)诱导体液免疫及抗原特异性T 细胞免疫反应[J]. 中国免疫学杂志, 2024, 40(8): 1579-1583, 1589.BAI Yu, QI Chunjian, XIA Lei, et al. Yeast β-glucan vehicle based oral OVA vaccine (WGP-OVA vaccine) induces humoral and antigen-specific T cell immune responses[J]. Chinese Journal of Immunology, 2024, 40(8): 1579-1583, 1589.
[19] 赵文婷, 陈智仙, 张小丽, 等. 酵母β-葡聚糖调节免疫力的研究[J]. 食品科技, 2021, 46(12): 245-250, 257.ZHAO Wenting, CHEN Zhixian, ZHANG Xiaoli, et al. Regulating effect of yeast β-glucan on immunity[J]. Food Science and Technology, 2021, 46(12): 245-250, 257.
[20] LEE C, VERMA R, BYUN S, et al. Structural specificities of cell surface β-glucan polysaccharides determine commensal yeast mediated immuno-modulatory activities[J]. Nature Communications,2021, 12(1): 3611.
[21] 朱娅敏, 张海波, 夏长虹, 等. 酵母β-葡聚糖对小鼠免疫力增强作用的研究[J]. 食品与发酵科技, 2016, 52(2): 1-2, 21.ZHU Yamin, ZHANG Haibo, XIA Changhong, et al. Study on the effect of yeast β-dextran on immunity in mice[J]. Food and Fermentation Technology, 2016, 52(2): 1-2, 21.
[22] DE MARCO CASTRO E, CALDER P C, ROCHE H M. β-1, 3/1, 6-glucans and immunity: State of the art and future directions[J]. Molecular Nutrition & Food Research, 2021, 65(1): 1901071.
[23] VUSCAN P, KISCHKEL B, HATZIOANNOU A, et al. Potent induction of trained immunity by Saccharomyces cerevisiae β-glucans[J].Frontiers in Immunology, 2024, 15: 1323333.
[24] HAN F F, FAN H X, YAO M, et al. Oral administration of yeast βglucan ameliorates inflammation and intestinal barrier in dextran sodium sulfate - induced acute colitis[J]. Journal of Functional Foods, 2017, 35: 115-126.
[25] WANG F, XU J, HU C Q, et al. β-Glucan regulates the intestinal immunity of pearl gentian grouper via the nuclear factor kappa B signaling pathway[J]. Fish & Shellfish Immunology, 2024, 154: 109941.
[26] CARBALLO C, PINTO P I S, MATEUS A P, et al. Yeast β-glucans and microalgal extracts modulate the immune response and gut microbiome in Senegalese sole (Solea senegalensis)[J]. Fish & Shellfish Immunology, 2019, 92: 31-39.
[27] WANG M, WANG X Y, ZHANG L F, et al. Effect of sulfated yeast beta-glucan on cyclophosphamide-induced immunosuppression in chickens[J]. International Immunopharmacology, 2019, 74: 105690.
[28] VETVICKA V, RICHTER J, SVOZIL V, et al. Placebo-driven clinical trials of yeast-derived β-(1,3) glucan in children with chronic respiratory problems[J]. Annals of Translational Medicine, 2013,1(3): 26
[29] RICHTER J, SVOZIL V, KRÁL V, et al. β-Glucan affects mucosal immunity in children with chronic respiratory problems under physical stress: Clinical trials[J]. Annals of Translational Medicine,2015, 3(4): 52.
[30] MENG F. Bakers yeast beta-glucan decreases episodes of common childhood illness in 1 to 4 year old children during cold season in China[J]. Journal of Nutrition & Food Sciences, 2016, 6(4).
[31] TALBOTT S, TALBOTT J. Effect of β 1,3/1,6-glucan on upper respiratory tract infection symptoms and mood state in marathon athletes[J]. Journal of Sports Science & Medicine, 2009, 8(4): 509-515.
[32] RENZ H, ALLEN K J, SICHERER S H, et al. Food allergy[J]. Nature Reviews Disease Primers, 2018, 4: 17098.
[33] JESENAK M, BANOVCIN P, RENNEROVA Z, et al. β-Glucans in the treatment and prevention of allergic diseases[J]. Allergologia et Immunopathologia, 2014, 42(2): 149-156.
[34] TALBOTT S M, TALBOTT J A, TALBOTT T L, et al. β-Glucan supplementation, allergy symptoms, and quality of life in self-described ragweed allergy sufferers[J]. Food Science & Nutrition,2013, 1(1): 90-101.
[35] WANG H L, CHEN G J, LI X, et al. Yeast β-glucan, a potential prebiotic, showed a similar probiotic activity to inulin[J]. Food & Function, 2020, 11(12): 10386-10396.
[36] ZHANG S S, NIE Q X, SUN Y G, et al. Bacteroides uniformis degrades β-glucan to promote Lactobacillus johnsonii improving indole-3-lactic acid levels in alleviating colitis[J]. Microbiome, 2024, 12(1): 177.
[37] 刘岩, 李翔宇, 李成会. 酵母β-葡聚糖的营养研究进展[J]. 畜禽业, 2019, 30(2): 4-6.LIU Yan, LI Xiangyu, LI Chenghui. The research of yeast-β-glucan nutrition[J]. Livestock and Poultry Industry, 2019, 30(2): 4-6.
[38] LI S C, PENG H H, SUN Y N, et al. Yeast β-glucan attenuates dextran sulfate sodium-induced colitis: Involvement of gut microbiota and short-chain fatty acids[J]. International Journal of Biological Macromolecules, 2024, 280: 135846.
[39] 孙运红, 莫小杏, 沈丽慧, 等. 酵母β-葡聚糖对高脂饮食诱导的结肠炎的改善作用及相关机制研究[C]. 成都: 第十四届亚洲营养大会, 2023.SUN Yunhong,MO Xiaoxing,SHENG Lihui, et al. The improvement effect and related mechanism of yeast β - glucan on high-fat diet induced colitis[C]. Chengdu: Abstract Book of the 14th Asian Congress of Nutrition—Food & Nutrition, 2023.
[40] CHEN Z Y, LIN S S, JIANG Y, et al. Effects of bread yeast cell wall beta-glucans on mice with loperamide-induced constipation[J].Journal of Medicinal Food, 2019, 22(10): 1009-1021.
[41] SIVIGNON A, YU S Y, BALLET N, et al. Heteropolysaccharides from S. cerevisiae show anti-adhesive properties against E. coli associated with Crohn′s disease[J]. Carbohydrate Polymers, 2021, 271:118415.
[42] KHAN A A, GANI A, MASOODI F A, et al. Structural, thermal, functional, antioxidant & antimicrobial properties of β-D-glucan extracted from baker′s yeast (Saccharomyces cereviseae)-Effect of γ-irradiation[J]. Carbohydrate Polymers, 2016, 140: 442-450.
[43] 曹燕. 酵母β-葡聚糖的结构及其对肥胖/2-型糖尿病小鼠的代谢调控[D]. 武汉: 武汉大学, 2017.CAO Yan. Structure of yeast β-glucan and its metabolic regulation on obese/type 2 diabetic mice[D]. Wuhan: Wuhan University, 2017.
[44] CAO Y, SUN Y, ZOU S W, et al. Yeast β-glucan suppresses the chronic inflammation and improves the microenvironment in adipose tissues of ob/ob mice[J]. Journal of Agricultural and Food Chemistry, 2018, 66(3): 621-629.
[45] MITCHELSON K A J, TRAN T T T, DILLON E T, et al. Yeast βglucan improves insulin sensitivity and hepatic lipid metabolism in mice humanized with obese type 2 diabetic gut microbiota[J]. Molecular Nutrition & Food Research, 2022, 66(22): 2100819.
[46] CHEN G J, CHEN D, ZHOU W T, et al. Improvement of metabolic syndrome in high-fat diet-induced mice by yeast β-glucan is linked to inhibited proliferation of Lactobacillus and Lactococcus in gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2021, 69(27): 7581-7592.
[47] LI X, WU J S, KANG Y J, et al. Yeast mannoproteins are expected to be a novel potential functional food for attenuation of obesity and modulation of gut microbiota[J]. Frontiers in Nutrition, 2022, 9:1019344.
[48] MO X X, SUN Y H, LIANG X L, et al. Insoluble yeast β-glucan attenuates high-fat diet-induced obesity by regulating gut microbiota and its metabolites[J]. Carbohydrate Polymers, 2022, 281: 119046.
[49] CAO Y, ZOU S W, XU H, et al. Front cover: Hypoglycemic activity of the Baker′s yeast β-glucan in obese/type 2 diabetic mice and the underlying mechanism[J]. Molecular Nutrition & Food Research,2016, 60(12): 2678-2690.
[50] CRONIN P, HURLEY C, RYAN A, et al. Yeast β-glucan supplementation lowers insulin resistance without altering microbiota composition compared with placebo in subjects with type II diabetes: A phase I exploratory study[J]. The British Journal of Nutrition,2024, 132(9): 1-12.
[51] MOSIKANON K, ARTHAN D, KETTAWAN A, et al. Yeast β-glucan modulates inflammation and waist circumference in overweight and obese subjects[J]. Journal of Dietary Supplements, 2017, 14(2):173-185.
[52] HUANG M H, YANG M C. Evaluation of glucan/poly(vinyl alcohol)blend wound dressing using rat models[J]. International Journal of Pharmaceutics, 2008, 346(1/2): 38-46.
[53] 罗珍. 多组学联用探究酵母β-葡聚糖抗慢阻肺的作用机理[D].广州: 华南理工大学, 2021.LUO Zhen. Exploring the mechanism of yeast β-glucan against chronic obstructive pulmonary disease by multi-group study[D].Guangzhou: South China University of Technology, 2021.
[54] 张棋炜. 酵母β-葡聚糖通过调节肠道菌群改善APP/PS1 小鼠认知障碍的机制研究[D]. 泰安: 山东农业大学, 2023.ZHANG Qiwei. Mechanism of yeast β-glucan improving cognitive impairment in APP/PS1 mice by regulating intestinal flora[D].Tai′an: Shandong Agricultural University, 2023.
[55] MO X X, CHENG R J, SHEN L H, et al. Yeast β-glucan alleviates high-fat diet-induced Alzheimer′s disease-like pathologies in rats via the gut-brain axis[J]. International Journal of Biological Macromolecules, 2024, 278: 134939.
[56] XU M D, MO X X, HUANG H, et al. Yeast β-glucan alleviates cognitive deficit by regulating gut microbiota and metabolites in Aβ1-42-induced AD-like mice[J]. International Journal of Biological Macromolecules, 2020, 161: 258-270.
[57] MYKHALEVYCH A, POLISHCHUK G, NASSAR K, et al. β-Glucan as a techno-functional ingredient in dairy and milk-based products-A review[J]. Molecules, 2022, 27(19): 6313.
[58] RAIKOS V, GRANT S B, HAYES H, et al. Use of β-glucan from spent brewer′s yeast as a thickener in skimmed yogurt: Physicochemical, textural, and structural properties related to sensory perception[J]. Journal of Dairy Science, 2018, 101(7): 5821-5831.
[59] AL-SAHLANY S T G, AL-KAABI W J, AL-MANHEL A J A, et al.Effects of β-glucan extracted from Saccharomyces cerevisiae on the quality of bio-yoghurts: In vitro and in vivo evaluation[J]. Journal of Food Measurement and Characterization, 2022, 16(5): 3607-3617.
[60] MARTINS Z E, PINHO O, FERREIRA I O. Impact of new ingredients obtained from brewer′s spent yeast on bread characteristics[J].Journal of Food Science and Technology, 2018, 55(5): 1966-1971.
[61] PELTZER M, DELGADO J F, SALVAY A G, et al. β-glucan, a promising polysaccharide for bio-based films developments for food contact materials and medical applications[J]. Current Organic Chemistry, 2018, 22(12): 1249-1254.
[62] NOVÁK M, SYNYTSYA A, GEDEON O, et al. Yeast β(1-3), (1-6)-D-glucan films: Preparation and characterization of some structural and physical properties[J]. Carbohydrate Polymers, 2012, 87(4):2496-2504.
[63] APOSTU P M, MIHOCIU T E, NICOLAU A I. Technological and sensorial role of yeast β-glucan in meat batter reformulations[J].Journal of Food Science and Technology, 2017, 54(9): 2653-2660.
[64] 张漫莉. 酵母β-葡聚糖溶解性与乳化性改善及应用研究[D]. 北京: 中国农业科学院, 2021.ZHANG Manli. Study on improvement of solubility and emulsifiability of yeast β-glucan and its application[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.
[65] REIS S F, FERNANDES P A R, MARTINS V J, et al. Brewer′s spent yeast cell wall polysaccharides as vegan and clean label additives for mayonnaise formulation[J]. Molecules, 2023, 28(8): 3540.
[66] 邹延, 苑鹏, 周芳, 等. 酵母β-葡聚糖改性增溶技术及其应用研究进展[J/OL]. 食品与发酵工业, 2024: 1-11. (2024-09-20). https://doi.org/10.13995/j.cnki.11-1802/ts.040364.ZOU Yan, YUAN Peng, ZHOU Fang, et al. Research progress of yeast β-glucan modified solubilization technology and its application[J/OL]. China Industrial Economics, 2024: 1-11. (2024-09-20).https://doi.org/10.13995/j.cnki.11-1802/ts.040364.
Progress in the Immunological and Probiotic Functions of Yeast β-Glucan and Its Application in Food
汪志强,王君巧,聂少平. 酵母β-葡聚糖的免疫和益生元功能及其在食品中应用的研究进展[J]. 食品研究与开发,2025,46(7):191-196.
WANG Zhiqiang, WANG Junqiao, NIE Shaoping. Progress in the Immunological and Probiotic Functions of Yeast β-Glucan and Its Application in Food[J]. Food Research and Development,2025,46(7):191-196.