植物精油的抗菌活性及其在食品保鲜中的应用

何锡媛1,2,孔祥1,2,刘枣1,2,祁勇刚1,2,吴勇康2,3,柳志杰1,2*

(1.湖北工业大学生命科学与健康工程学院湖北省食品发酵工程技术研究中心,湖北武汉 430068;2.湖北省发酵蔬菜企校联合创新中心,湖北荆门 431821;3.湖北聚汇农业开发有限公司,湖北荆门 431821)

摘 要:植物精油是从植物中提取的、具有多种活性成分的芳香液体。因其优异的抑菌活性,植物精油成为理想的天然防腐剂,在食品保鲜中广泛应用。该文对植物精油的提取方法、抑菌活性、抑菌机制以及近三年在食品保鲜中的应用进行综述,以期为进一步开发植物精油成为天然防腐剂提供参考。

关键词:植物精油;提取方法;抑菌活性;抑菌机制;食品保鲜

食品因原料、加工、包装、运输、贮藏以及上市期间容易受到微生物的侵染,微生物大量生长繁殖,导致食品腐败变质。在食品工业中使用合成防腐剂是延长食品保质期和防止变质的一种常见做法[1]。然而,微生物(如细菌、真菌)会对防腐剂产生一定的抗性[2]。随着生活水平的提高,人们对食品的要求已从“安全”上升到“绿色”和“健康”。对此,研究人员致力于将天然化合物和精油用于食品保鲜[3]。目前,已有不少植物精油被批准作为食品添加剂应用于食品加工,包括丁香、肉桂、罗勒、肉豆蔻、百里香和牛至等[4]。此外,植物精油还常被当作原料用于活性食品包装的开发[5]。植物精油作为天然防腐剂有望替代合成防腐剂在食品中使用。

本文综述植物精油的提取方法、具有代表性精油的抑菌活性、抑菌机制以及近三年植物精油在果蔬、肉制品、水产品和奶制品的应用,以期为植物精油作为天然防腐剂在食品工业应用提供理论依据。

1 植物精油的提取方法

植物精油是具有挥发性的油状液体,主要存在植物根、茎、叶、花、果实、种子等部位中。目前,植物精油的提取方法主要有加氢蒸馏(hydrodistillation,HD)、蒸汽蒸馏(steam distillation,SD)、有机溶剂萃取(organic solvent extraction,OSE)、冷榨(cold pressing,CP)、超临界萃取(supercritical fluid extraction,SFE)、微波辅助萃取(microwave‐assisted extraction,MAE)、固相微萃取(solid‐phase microextraction,SPME)等[6]。植物精油的提取方法会影响精油的品质以及活性成分的稳定性,应根据实际条件以及精油特性进行选择。

2 植物精油的抑菌活性

植物精油是含有多种活性成分的混合物,其抑菌成分主要可以分为4 类:萜类化合物、芳香族化合物、脂肪族化合物、含氮含硫化合物。其中,萜类和酚类化合物(芳香族化合物)是植物精油的主要抑菌物质[7]。植物精油对多种食源性致病菌具有抑制作用,一般认为革兰氏阴性菌对精油的敏感性略低于革兰氏阳性菌。表1总结了部分具有抑菌作用的代表性植物精油。

表1 具有抑菌作用的代表性精油
Table1 Representative essential oils with antibacterial activity

精油名称牛至精油肉桂精油百里香精油丁香精油罗勒精油芫荽精油柠檬草精油主要抑菌成分香芹酚丁香酚百里香酚丁香酚石竹烯芳樟醇丁香酚芳樟醇α‐柠檬醛β‐柠檬醛抑菌成分含量/%63.97 75.52 44.50 56.06 39.63 41.30 5.90 69.49 36.70 22.92抑菌效果枯草芽孢杆菌、白色念珠球菌、粪肠球菌、产气芽孢杆菌、耐久肠球菌、屎肠球菌、大肠杆菌、肺炎克雷伯菌、单核李斯特菌、无害李斯特菌、铜绿假单胞菌、荧光假单胞菌、婴儿沙门氏菌、肯塔基沙门氏菌、鼠伤寒沙门氏菌、金黄色葡萄球菌和表皮葡萄球菌的最小抑菌浓度(minimun inhibitory concentratio,MIC)均<0.195µg/mL大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌、伤寒沙门氏菌、肺炎克雷伯菌、铜绿假单胞菌、芽孢杆菌MIC 值为0.025%~0.050%(体积分数),最小杀菌浓度(minimun bactericidal concentration,MBC)为0.05%~0.10%(体积分数)鼠伤寒肠道沙门氏菌、单增李斯特菌和小肠结肠炎耶尔森氏菌的MIC 分别为0.6、0.3、0.3 mg/mL鼠伤寒沙门氏菌、单核增生李斯特菌、金黄色葡萄球菌、大肠杆菌的MIC 均为0.304 mg/mL麦芽香肉杆菌D1203、唾液链球菌GM、腐生葡萄球菌3S、大肠杆菌32 的MIC 分别为1.25、1.25、2.50、1.25µL/mL枯草芽孢杆菌、白色念珠球菌、屎肠球菌、肠炎沙门氏菌、婴儿沙门氏菌、肯塔基沙门氏菌、鼠伤寒沙门氏菌的MIC 均<0.195µg/mL;粪肠球菌、产气肠杆菌、耐久肠球菌、大肠杆菌、肺炎克雷伯菌、单核细胞增生李斯特菌、无害李斯特菌、铜绿假单胞菌、荧光假单胞菌、金黄色葡萄球菌、表皮葡萄球菌的MIC分别为1.562、3.125、100、50、0.390、6.25、0.390、0.390、3.125、12.5、3.125µg/mL蜡样芽孢杆菌、产气荚膜梭菌、无害李斯特菌、金黄色葡萄球菌、空肠弯曲杆菌、大肠杆菌和肠炎沙门氏菌血清型鼠伤寒杆菌的MIC 分别为10.10、20.41、30.92、10.10、10.10、20.41、30.92µg/mL参考文献[8][9][10][11][12][13][14]

3 常见植物精油的抑菌机理

植物精油具有丰富的生理活性,其中,抑菌活性是植物精油重要的活性之一,该活性使植物精油在食品、医药、农业以及化妆品等行业中广泛应用。因植物精油活性成分的多样性以及浓度的多变性,导致植物精油的抑菌机制往往不是单一的和特定的。

3.1 破坏细胞壁和细胞膜

细胞壁和细胞膜能够维持细胞形状、保护内部环境以及控制物质进出,在细胞的生命活动中具有重要的作用。疏水性是植物精油的一个重要特征,该特性允许植物精油进入细胞膜使细胞的渗透性增加,导致细胞破裂。此外,疏水性精油可以与细胞膜的磷脂、多糖、脂肪酸相互作用,破坏细胞膜的完整性和功能。通过进一步研究表明,植物精油的抑菌活性与活性成分的官能团密切相关,酚类化合物和萜类化合物的羟基官能团能够破坏细胞膜中的磷脂双分子层结构,进而破坏细胞膜的完整性,使细胞内容物质外渗,导致细胞死亡[15]。山仓子精油能够破坏细胞壁和细胞膜结构,导致碱性磷酸酶和核酸外渗[16]。香橼精油通过破坏细菌细胞膜的通透性和表面疏水性,引起胞内蛋白质和核酸渗漏,抑制细胞膜形成,进而抑制大肠杆菌K99和嗜酸乳杆菌的生长[17]。罗勒精油增加了磷脂尾部羧基链的无序性,从而导致细胞膜通透性增加,进而引起细胞内蛋白质和DNA 的外渗[18]。红蓼精油作用于胡萝卜软腐病果胶杆菌时,增加了其表面电位和疏水性,破坏了细胞壁以及细胞膜的完整性,降低了膜电位,改变了膜蛋白构象[19]

3.2 影响群体感应

群体感应(quorum sensing,QS)是一种细菌通信调节机制,可以调节细菌生物膜的形成、毒性因子的表达、DNA 转录、色素的生成、质粒的转移、群集运动等生理行为,调节与致病菌相关的蛋白质、脂肪、果胶、壳聚糖等分解酶的活性,抑制QS 系统可有效降低细菌的感染能力[20]。黑豆蔻精油通过破坏大肠杆菌O157:H7 和鼠伤寒沙门氏菌JSG 1748 的群体感应系统来抑制它们的生物膜的形成[21]。茴香挥发油通过抑制鞭毛运动、生物膜的形成和一些毒力酶的分泌来干扰革兰氏阴性菌的群体感应系统[22]。茶树油对金黄色葡萄球菌蜂群运动的抑制率为33.33%[23]。鼠尾草精油中的鼠尾草酸以及牛至精油中的百里香酚和丁香酚能够下调RNA III 基因的表达,显著降低其在金黄色葡萄球菌生物膜形成中的转录调控因子以及毒力基因的表达[24‐25]。葛缕子精油可以减少革兰氏阴性菌中QS 系统控制的毒力相关因子的分泌[26]

3.3 影响呼吸作用和能量代谢

细胞能够通过呼吸作用为微生物的生命活动提供能量,三磷酸腺苷(adenosine triphosphate,ATP)是细胞的直接供能物质。植物精油能够通过破坏细胞膜,导致胞内ATP 外渗,或者通过抑制呼吸作用和能量代谢途径的关键酶使微生物能量代谢紊乱,进而影响微生物的正常生长。肉桂精油通过抑制三羧酸(tricarbox‐ylic acid,TCA)循环中关键酶的活性和ATP 酶的活性以及降低ATP 的含量来影响肠炎沙门氏菌的呼吸作用和能量代谢[27]。卡南加精油可以破坏沙门氏菌嘌呤代谢和TCA 循环的平衡,干扰氧化还原过程,导致细菌体内能量代谢紊乱和氧化应激损伤,使细菌休克、膜损伤加剧[28]。精油活性成分芳樟醇通过抑制TCA 循环相关酶(柠檬酸合成酶、异柠檬酸脱氢酶、α‐酮戊二酸脱氢酶、琥珀酸脱氢酶、苹果酸脱氢酶)的活性,引起能量供应不足,抑制索氏志贺氏菌的生长[29]。罗勒精油通过抑制糖酵解途径中的关键酶活性来影响细菌的呼吸代谢作用,这可能是活性成分α‐佛手柑烯与磷酸果糖激酶和丙酮酸激酶的氨基酸残基之间的疏水作用所致[18]。草果精油通过抑制金黄色葡萄球菌的ATP酶和6‐磷酸葡萄糖脱氢酶活性,降低细胞内ATP 含量,抑制细胞代谢过程中的磷酸戊糖途径,从而影响细菌的能量代谢和呼吸代谢,最终导致菌死亡[30]

3.4 抑制DNA 合成或损伤DNA 结构

DNA 是细菌的重要遗传信息载体,其合成异常或者结构损伤会影响遗传物质的正常复制以及细菌的生长繁殖。植物精油可以破坏细胞膜,导致DNA 的外渗,同时还可以抑制DNA 的合成以及损伤其结构。百里香酚是百里香精油的主要抗菌活性成分,百里香酚能够破坏嗜水气单胞菌的细胞膜,导致胞内DNA 外渗,渗漏量为66.4µg/mL[31]。此外,百里香酚能够嵌入铜绿假单胞菌基因组DNA 中,影响DNA 的正常功能,进而导致细菌死亡[32]。Xu 等[33]研究发现,丁香精油亦可以抑制金黄色葡萄球菌的DNA 和蛋白质合成,并可能对转录、翻译和DNA 复制产生影响。

4 植物精油在食品保鲜中的应用

4.1 植物精油在果蔬中的应用

果蔬含有充足的水分以及丰富的营养基质,是微生物优良的培养基。植物精油作为天然的防腐剂,在果蔬采前采后具有广泛的应用,其作用形式主要包括采前喷洒、精油浸渍、精油熏蒸、精油‐气调联用、精油复合可食用涂层以及精油保鲜纸等。Gutiérrez‐Pozo等[34]在柠檬采摘前喷洒100µL/L 的香芹酚精油,将柠檬在贮藏过程中的腐败率降低了66%,有效减少贮藏中的腐烂问题。然而需要注意控制喷洒精油的浓度、喷洒次数和喷洒时间,避免高浓度精油破坏柠檬的生物膜从而加剧柠檬的腐败。Awad 等[35]分别使用浓度为0.5%的乙醇、抗坏血酸、茶树油和薄荷油浸泡绿豆荚,然后置于5 ℃条件保存,结果表明控制微生物生长最有效的是乙醇,其次是茶树油或薄荷油。经过上述处理的绿豆荚外观、叶绿素和水分含量都得到了较好的保存。与对照组相比,处理后的绿豆荚检测到更高的维生素C、总可溶性固形物、总糖和总酚化合物含量。Kahramanoğlu 等[36]利用芫荽挥发油与气调包装联用,对石榴果进行保藏,发现石榴果的品质得到提高,储存寿命得到延长。灰霉病是常见的果蔬真菌性病害,香榧精油对灰霉病菌的半数有效浓度(median effective concentration,EC50)为81.672µL/L,圣女果在采摘后使用200µL/L 香榧精油进行熏蒸,能够有效抑制灰霉病菌的生长,香榧精油可作为熏蒸剂进一步开发成为防腐产品[37]。可食用涂层和薄膜是一种环保、可靠的果蔬保鲜方法。研究表明,由淀粉、明胶和肉桂精油制成的食品包衣能够有效抑制蓝莓果实贮藏过程中酵母菌和霉菌的生长,比对照组降低了1.29 个对数周期[38]。此外,以壳聚糖与百里香精油为主要原料合成的可食用涂层对葡萄孢霉的抑制率为48%,丁香精油和壳聚糖制备的可食用涂层对扩展青霉的抑制率为62%[39]

4.2 植物精油在肉类及肉制品中的应用

由于水分含量高、营养物质丰富,新鲜肉类及其制品在屠宰、运输、加工和销售过程中容易被微生物污染,导致肉类及其制品腐败。为此,在肉类加工过程中常加入食盐或者香料来抑制微生物生长、阻止脂肪氧化。Gumus 等[40]发现在饲粮中添加百里香精油和迷迭香精油能提高肉鸡屠宰后的抗微生物感染能力,提高储存品质。Xin 等[41]报道火龙果皮提取物和柠檬籽精油可作为抗氧化剂替代部分亚硝酸钠盐,实现羊肉的保鲜,减少腌制过程中亚硝酸盐的使用。Junhwan等[42]研究表明,与单独使用精油相比,精油与沙门氏菌噬菌体内溶素(LysPB32)联合使用对熟碎牛肉中的鼠伤寒沙门氏菌KCCM 40253 具有更强的抑菌活性。进一步研究发现,将游离精油乳化或将其微胶囊化能够提高精油在肉类中的抑菌活性[43‐44]。此外,植物精油常与蛋白质、多糖、脂质制备成可食用薄膜或者复合薄膜[45‐46]。在此基础上,研究发现向薄膜加入纳米材料(氧化锌、二氧化钛、纤维素纳米晶等)能够改善膜的力学性能,提高复合膜的稳定性和抑菌活性[47]。研究人员还开发了具有pH 值指示功能的活性膜,Li 等[48]以阿魏酸共色素化的蓝莓花青素为指示剂,ll‐环糊精包封的肉桂精油为抑菌剂,马铃薯淀粉为成膜底物,制备了具有pH 值指示和抗菌功能的双功能淀粉型智能活性包装膜。Zhang 等[49]采用同轴静电纺丝的方法,以L100 聚合物与肉桂精油为基料,制备出pH 触发包装膜。随着pH 值的增加,肉桂精油的释放率增加。该pH 敏感膜将猪里脊肉的保质期延长了3 d。活性薄膜和可食用涂层常结合低温保藏、真空包装以及γ 射线辐射等处理方法来进一步提高对肉类的保鲜效果。

4.3 植物精油在水产品中的应用

植物精油在水产品应用中具有较好的保鲜效果。Queiroga 等[50]研究发现使用大蒜精油处理凡纳滨对虾,能延迟对虾的颜色变化和致病微生物的增殖,在冷藏条件下其保质期至少延长15 d。Agdar 等[51]在虹鳟鱼鱼片上分别涂抹0.25% 和0.5% 的甜橙皮精油,将鱼片的保质期延长到8 d 和12 d。研究表明植物精油的复配使用可以进一步提高其抑菌性能。与柠檬草精油或茶多酚单独使用相比,柠檬草精油与茶多酚联合使用具有更强的抗氧化和抗菌活性,显著延缓了海鱼暗棘足的变质[52]。此外,研究表明精油与其他抑菌物质(乳酸菌、乳酸链球菌素、蒙氏杆菌STw38 以及聚赖氨酸等)复配使用同样可以提高抑菌效果,有效延长海鲜产品的保质期[53]。其次,将精油乳化也能提高其保鲜效果。Mutz 等[54]将牛至精油制备成纳米乳后处理鲑鱼,能够将肠炎沙门氏菌的灭活率提高两倍。精油复合活性膜和可食用涂层是植物精油作用于水产品保鲜的常见形式。Lan 等[55]利用牛至精油和果胶制成薄膜,成功抑制了太平洋白对虾的品质恶化;Chen 等[56]利用壳聚糖、聚乙烯醇和姜精油制备成纤维素活性膜,有效提高了黑鲈鱼在贮藏过程中的产品品质,使黑鲈的保质期延长了至少6 d。在此基础上,薄膜不断被改进以增强其保鲜作用。Surendhiran 等[57]研究发现,向薄膜中加入纳米材料能够提高薄膜的力学性能;Ran等[58]向肉桂精油‐皮克林乳液胶薄膜加入氧化桑葚提取物,不仅改善了薄膜的理化性能,还将薄膜对鱼的保质期延长了4 d。此外,薄膜在鱼保存过程中会出现明显的颜色变化(由红色转变到墨绿色),可根据薄膜颜色变化来判断鱼的新鲜度。负载精油的复合活性薄膜常结合低温、真空包装等用于保藏水产品,从而进一步提高水产品的保鲜效果。

4.4 植物精油在奶制品中的应用

牛奶在采集、运输、贮藏、生产过程中容易被微生物污染,其奶制品尤其是奶酪,在成熟过程中容易滋生微生物。为了延长牛奶及其制品的保藏时间和保证其品质,Castelani 等[59]向泌乳奶牛喂养百里香精油(8 mL/d)21 d,将收集的牛奶分装于50 mL 的瓶子中,冷藏168 h 后测定其营养成分含量和微生物总数。结果显示,与对照组相比,处理组的微生物总数显著降低,而牛奶成分无差异。Jimborean 等[60]在奶酪生产过程中添加百里香精油,稳定奶酪在贮藏期间的品质。在此基础上,植物精油复配使用能够提高其抑菌活性,精油结合乳酸菌提取物使用可以增强抗菌活性[61],蓝桉精油和肠球菌素OS1 复配使用增强了其对奶酪中单增李斯特菌的杀菌活性[62]。此外,Elsherif 等[63]发现精油乳化也能提高其抑菌活性,在奶酪中添加纳米乳精油,贮藏2~3 周后,纳米乳精油显著降低了接种病原体的计数,从8.2 lg(CFU/g)降至1.5 lg(CFU/g),而未乳化精油在4~5 周后才开始降低接种病原体的计数。另外,植物精油常与纳米材料或胶体物质制备成可食用涂层或者包装膜。Erkaya‐Kotan 等[64]以2%百里香油和榅桲籽黏液为基料制备可食用涂层,用于干酪保鲜,直到干酪成熟第120 天,酵母和霉菌的计数低于2 lg(CFU/g)。Chen 等[65]制备的负载柠檬精油的聚乳酸纳米纤维膜能有效抑制干酪表面病原菌的生长,在(25±1)℃条件下可有效延长蒙古奶酪的保质期至8 d。

5 结论和展望

植物精油常被直接添加或者作为包装材料在食品保鲜中应用,其在食品保鲜中表现出良好的抑菌活性和抗氧化活性。然而,部分植物精油具有刺激气味,给食品感官带来负面影响。因此,在食品生产中,可以使用消费者可接受的植物精油替代,或者使用复配精油以及精油与其他抑菌物质复合使用来增强植物精油的抑菌活性、减少精油的使用量并降低精油气味带来的影响。目前,许多研究表明植物精油对食品具有抑菌作用,但对于其抑菌机制研究较少,尚未建立系统的抑菌机制,精油及其成分的抑菌机制仍是研究热点。此外,植物精油的品质不稳定,易受植物生长环境、采集时间、提取部位、提取方法等影响,难以对其抑菌效果实现量化,因此,精油的生产应建立统一生产标准,加强植物精油在食品中的工业化应用。

参考文献:

[1] PROAÑO‐B J, RACINES‐O M, MONCAYO M P, et al. VegeTablepreservatives(essential oils)of guava(Psidium guajava L),an alter‐native for use in the food industry[J]. International Journal of Cur‐rent Research and Review,2021,13(17):186‐191.

[2] SCHIRONE M, VISCIANO P, TOFALO R, et al. Editorial: Food‐borne pathogens: Hygiene and safety[J]. Frontiers in Microbiology,2019,10:1974.

[3] TENEVA D, DENEV P. Biologically active compounds from probi‐otic microorganisms and plant extracts used as biopreservatives[J].Microorganisms,2023,11(8):1896.

[4] FALLEH H, BEN JEMAA M, SAADA M, et al. Essential oils: A promising eco‐friendly food preservative[J]. Food Chemistry, 2020,330:127268.

[5] BASUMATARY I B,MUKHERJEE A,KATIYAR V,et al.Biopoly‐mer‐based nanocomposite films and coatings: Recent advances in shelf‐life improvement of fruits and vegetables[J]. Critical Reviews in Food Science and Nutrition,2022,62(7):1912‐1935.

[6] ZHOU W W, LI J, WANG X F, et al. Research progress on extrac‐tion, separation, and purification methods of plant essential oils[J].Separations,2023,10(12):596.

[7] REDONDO‐BLANCO S, FERNÁNDEZ J, LÓPEZ‐IBÁÑEZ S, et al. Plant phytochemicals in food preservation: Antifungal bioactiv‐ity:A review[J].Journal of Food Protection,2020,83(1):163‐171.

[8] ÖZKAN O E, GÜNEY K, GÜR M, et al. Essential oil of oregano and savory;chemical composition and antimicrobial activity[J]. In‐dian Journal of Pharmaceutical Education and Research, 2017, 51(3s):s205‐s208.

[9] CUI H Y, ZHOU H, LIN L, et al. Antibacterial activity and mecha‐nism of cinnamon essential oil and its application in milk[J]. Jour‐nal of Animal and Plant Sciences,2016,26(2):532‐541.

[10] MANIKI E,KOSTOGLOU D,PATERAKIS N,et al.Chemical com‐position, antioxidant, and antibiofilm properties of essential oil from Thymus capitatus plants organically cultured on the Greek Is‐land of Lemnos[J].Molecules,2023,28(3):1154.

[11] RADÜNZ M,DA TRINDADE M L M,CAMARGO T M,et al.Anti‐microbial and antioxidant activity of unencapsulated and encapsu‐lated clove(Syzygium aromaticum L.)essential oil[J].Food Chemis‐try,2019,276:180‐186.

[12] AMOR G, SABBAH M, CAPUTO L, et al. Basil essential oil: Com‐position, antimicrobial properties, and microencapsulation to pro‐duce active chitosan films for food packaging[J]. Foods, 2021, 10(1):121.

[13] ÖZKINALI S, ŞENER N, GÜR M, et al. Antimicrobial activity and chemical composition of coriander & galangal essential oil[J]. In‐dian Journal of Pharmaceutical Education and Research, 2017, 51(3s):s221‐s224.

[14] DE MELO A M,BARBI R C T,CHAVES ALMEIDA F L,et al.Ef‐fect of microencapsulation on chemical composition and antimicro‐bial, antioxidant and cytotoxic properties of lemongrass (Cymbo⁃pogon flexuosus) essential oil[J]. Food Technology and Biotechnol‐ogy,2022,60(3):386‐395.

[15] KONUK H B, ERGÜDEN B. Phenolic‐OH group is crucial for the antifungal activity of terpenoids via disruption of cell membrane in‐tegrity[J].Folia Microbiologica,2020,65(4):775‐783.

[16] YANG Y J,LIN M Y,FENG S Y,et al.Chemical composition,anti‐bacterial activity,and mechanism of action of essential oil from Lit⁃sea cubeba against foodborne bacteria[J]. Journal of Food Process‐ing and Preservation,2020,44(9):e14724.

[17] TANG W X, ZHANG Z, NIE D C, et al. Selective antibacterial ac‐tivity of Citrus medica limonum essential oil against Escherichia coli K99 and Lactobacillus acidophilus and its antibacterial mecha‐nism[J].LWT‐Food Science and Technology,2023,186:115215.

[18] LI C Z, ZHANG C H, CHEN X C, et al. The interference mecha‐nism of basil essential oil on the cell membrane barrier and respira‐tory metabolism of Listeria monocytogenes[J]. Frontiers in Microbi‐ology,2022,13:855905.

[19] CAI J, WANG S Q, GAO Y C, et al. Antibacterial activity and mechanism of Polygonum orientale L. essential oil against Pecto⁃bacterium carotovorum subsp. carotovorum[J]. Foods, 2022, 11(11):1585.

[20] RAHMAN M R T, LOU Z X, YU F H, et al. Anti‐quorum sensing and anti‐biofilm activity of Amomum tsaoko (Amommum tsao‐ko Crevost et Lemarie) on foodborne pathogens[J]. Saudi Journal of Biological Sciences,2017,24(2):324‐330.

[21] ABDULLAH,ALGBURI A,ASGHAR A,et al.Black cardamom es‐sential oil prevents Escherichia coli O157: H7 and Salmonella ty⁃phimurium JSG 1748 biofilm formation through inhibition of quo‐rum sensing[J]. Journal of Food Science and Technology, 2021, 58(8):3183‐3191.

[22] GHANNAY S, AOUADI K, KADRI A, et al. In vitro and in silico screening of anti‐Vibrio spp., antibiofilm, antioxidant and anti‐quo‐rum sensing activities of Cuminum cyminum L. volatile oil[J].Plants,2022,11(17):2236.

[23] NOUMI E, MERGHNI A, M ALRESHIDI M, et al. Chromobacte⁃rium violaceum and Pseudomonas aeruginosa PAO1: Models for evaluating anti‐quorum sensing activity of Melaleuca alternifolia es‐sential oil and its main component terpinen‐4‐ol[J]. Molecules,2018,23(10):2672.

[24] IOBBI V, PARISI V, BERNABÈ G, et al. Anti‐biofilm activity of carnosic acid from Salvia rosmarinus against methicillin‐resistant Staphylococcus aureus[J].Plants,2023,12(21):3679.

[25] MARTÍNEZ A, STASHENKO E E, SÁEZ R T, et al. Effect of es‐sential oil from Lippia origanoides on the transcriptional expression of genes related to quorum sensing, biofilm formation, and viru‐lence of Escherichia coli and Staphylococcus aureus[J]. Antibiotics,2023,12(5):845.

[26] GHANNAY S, AOUADI K, KADRI A, et al. GC‐MS profiling, vib‐riocidal, antioxidant, antibiofilm, and anti‐quorum sensing proper‐ties of Carum carvi L.essential oil:in vitro and in silico approaches[J].Plants,2022,11(8):1072.

[27] ZHANG Z, ZHAO Y Y, CHEN X Q, et al. Effects of cinnamon es‐sential oil on the physiological metabolism of Salmonella enteritidis[J].Frontiers in Microbiology,2022,13:1035894.

[28] YAO X Y, GAO J Y, WANG L Q, et al. Cananga oil inhibits Sal⁃monella infection by mediating the homeostasis of purine metabo‐lism and the TCA cycle[J]. Journal of Ethnopharmacology, 2024,325:117864.

[29] HE R R,CHEN W J,ZHONG Q P,et al.Targeted amino acid con‐sumption and respiratory depression to study the antibacterial mechanism of linalool against Shigella sonnei[J]. Food Control,2024,155:110058.

[30] GUO J R, LI W D, WAN S B, et al. Antibacterial activity of Amo⁃mum tsaoko essential oil and its interaction with Staphylococcus au⁃reus[J].LWT‐Food Science and Technology,2024,191:115700.

[31] LIANG C, HUANG S H, GENG Y, et al. A Study on the antibacte‐rial mechanism of thymol against Aeromonas hydrophila in vitro[J].Aquaculture International,2022,30(1):115‐129.

[32] LIU T, KANG J M, LIU L. Thymol as a critical component of Thy⁃mus vulgaris L. essential oil combats Pseudomonas aeruginosa by intercalating DNA and inactivating biofilm[J]. LWT‐Food Science and Technology,2021,136:110354.

[33] XU J G, LIU T, HU Q P, et al. Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus[J].Molecules,2016,21(9):1194.

[34] GUTIÉRREZ ‐ POZO M, SERNA ‐ ESCOLANO V, GIMÉNEZ ‐BERENGUER M, et al. The preharvest application of essential oils(carvacrol, eugenol, and thymol) reduces fungal decay in lemons[J].Agriculture,2023,13(7):1437.

[35] AWAD A H R, PARMAR A, ALI M R, et al. Extending the shelf‐life of fresh‐cut green bean pods by ethanol, ascorbic acid, and es‐sential oils[J].Foods,2021,10(5):1103.

[36] KAHRAMANOGLU I,OKATAN V,PANFILOVA O,et al.Improv‐ing the storage quality of pomegranate fruit by combining modified atmosphere packaging and Origanum syriacum volatile essential oil[J].Pakistan Journal of Botany,2024,56(1):1‐9.

[37] JIANG L L, WANG J B, WANG W H, et al. Effects of three essen‐tial oil fumigation treatments on the postharvest control of Botrytis cinerea and their efficacy as preservatives of cherry tomatoes[J].Plant Disease,2023,107(6):1874‐1882.

[38] TOMASZ P, KATARZYNA G B, MICHAŁ S, et al. Quality and an‐tioxidant activity of highbush blueberry fruit coated with starch‐based and gelatine‐based film enriched with cinnamon oil[J]. Food Control,2022,138:109015.

[39] SOPPELSA S, VAN HEMELRIJCK W, BYLEMANS D, et al. Es‐sential oils and chitosan applications to protect apples against post‐harvest diseases and to extend shelf life[J]. Agronomy, 2023, 13(3):822.

[40] GUMUS R, GELEN S U. Effects of dietary thyme and rosemary es‐sential oils on performance parameters with lipid oxidation, water activity, pH, colour and microbial quality of breast and drumstick meats in broiler chickens[J]. Archives Animal Breeding, 2023, 66(1):17‐29.

[41] XIN K Q, JI X Y, GUO Z L, et al. Pitaya peel extract and lemon seed essential oil as effective sodium nitrite replacement in cured mutton[J].LWT‐Food Science and Technology,2022,160:113283.

[42] JUNHWAN K, SONGRAE K, JUN W, et al. Synergistic antimicro‐bial activity of essential oils in combination with phage endolysin against Salmonella typhimurium in cooked ground beef[J]. Food Control,2024,157:110187.

[43] DGHAIS S,BEN JEMAA M,CHOUCHEN M,et al.Nano‐emulsifi‐cation of cinnamon and Curcuma essential oils for the quality im‐provement of minced meat beef[J].Foods,2023,12(2):235.

[44] LI Y Z, YU H H, TANG Z G, et al. Effect of Coreopsis tinctoria mi‐crocapsules on tyramine production by Enterococcus faecium in smoked horsemeat sausage[J]. LWT‐Food Science and Technology,2022,170:113974.

[45] ZHENG K X,LI B,LIU Y,et al.Effect of chitosan coating incorpo‐rated with oregano essential oil on microbial inactivation and qual‐ity properties of refrigerated chicken breasts[J]. LWT‐Food Science and Technology,2023,176:114547.

[46] ZHANG D J, ZHANG Y J, GAO Y Y, et al. Stability, bioavailabil‐ity, and antimicrobial activity of garlic extract liposomes prepared from lecithin and β‐sitosterol[J]. Journal of Food Measurement and Characterization,2022,16(2):1383‐1394.

[47] ZHENG K W, ZHANG J B, YANG F, et al. Properties and biologi‐cal activity of chitosan‐coix seed starch films incorporated with nano zinc oxide and Artemisia annua essential oil for pork preserva‐tion[J].LWT‐Food Science and Technology,2022,164:113665.

[48] LI J X, BAO Y W, LI Z Y, et al. Dual‐function β‐cyclodextrin/starch‐based intelligent film with reversible responsiveness and sustained bacteriostat‐releasing for food preservation and monitor‐ing[J]. International Journal of Biological Macromolecules, 2023,253(Pt 5):127168.

[49] ZHANG J J, ZHANG J N, HUANG X W, et al. Study on cinnamon essential oil release performance based on pH‐triggered dynamic mechanism of active packaging for meat preservation[J]. Food Chemistry,2023,400:134030.

[50] QUEIROGA I M B N, CAVALCANTI M T, DE LIRA ANDRADE M, et al. Performance of Allium cepa and Allium sativum essential oils on the quality of marine shrimp Litopenaeus vannamei (Boone,1931)under MAP packaging[J].Food Control,2023,152:109885.

[51] AGDAR GHAREAGHAJI M, ZOMORDI S, GHAREKHANI M, et al.Effect of edible coating based on salep containing orange (Citrus sinensis) peel essential oil on shelf life of rainbow trout (Oncorhyn⁃chus mykiss) fillets[J]. Journal of Food Processing and Preservation,2021,45(9):e15737.

[52] ZHOU Q, HE D, YU H P, et al. Increased antioxidant and antimi‐crobial activities of lemongrass and cinnamon essential oils with tea polyphenols and its application in the preservation of marine fish[J]. International Journal of Food Science & Technology, 2023,58(7):3996‐4008.

[53] SHARMA H, FIDAN H, ÖZOGUL F, et al. Recent development in the preservation effect of lactic acid bacteria and essential oils on chicken and seafood products[J]. Frontiers in Microbiology, 2022,13:1092248.

[54] MUTZ Y S,RAMOS C,GUERRA MONTEIRO M L,et al.Optimiz‐ing Salmonella enteritidis inactivation in Salmon (Salmo salar) by the combined treatment of UV‐LED and of Origanum vulgare es‐sential oil nanoemulsion[J].Food Control,2023,154:110004.

[55] LAN W Q, YANG X, CHEN M L, et al. Oregano essential oil‐pec‐tin edible films on shelf‐life extension of large yellow croaker (Pseu⁃dosciaena crocea) fillet during iced storage[J]. Journal of Aquatic Food Product Technology,2022,31(4):321‐331.

[56] CHEN X N, LAN W Q, XIE J. Characterization of active films based on chitosan/polyvinyl alcohol integrated with ginger essential oil‐loaded bacterial cellulose and application in sea bass (Lateo⁃labrax japonicas) packaging[J]. Food Chemistry, 2024, 441:138343.

[57] SURENDHIRAN D,ROY V C,PARK J S,et al.Fabrication of chi‐tosan‐based food packaging film impregnated with turmeric essen‐tial oil (TEO)‐loaded magnetic‐silica nanocomposites for surimi preservation[J]. International Journal of Biological Macromolecules,2022,203:650‐660.

[58] RAN R M, XIONG Y M, ZHENG T T, et al. Active and intelligent collagen films containing laccase‐catalyzed mulberry extract and Pickering emulsion for fish preservation and freshness indicator[J].Food Hydrocolloids,2024,147:109326.

[59] CASTELANI L, PFRIMER K, GIGLIOTI R, et al. Effects of thyme(Thymus vulgaris L.) essential oil supplementation on the microbio‐logical quality of raw milk of lactating dairy cows[J]. Research in Veterinary Science,2023,161:118‐121.

[60] JIMBOREAN M A, BORŞA A, MICHIU D, et al. Aloe vera gel mi‐crocapsules and essential oils of thyme and oregano incorporated in spreadable goat cheese: Impact on its microbiological, physico‐chemical,and sensory characteristics during storage[J].Notulae Bo‐tanicae Horti Agrobotanici Cluj‐Napoca,2021,49(1):12001.

[61] SHOJAEE A,ANVAR S A,HAMEDI H,et al.Antifungal and anti‐oxidant activity of two essential oils and Lactococcus lactis subsp.lactis extract on selected Iranian white cheese‐contaminating fungi[J]. International Journal of Dairy Technology, 2022, 75(2): 372‐379.

[62] ANANOU S,BOURAQQADI M,ZOUHRI N,et al.Control of Liste⁃ria monocytogenes in a fresh cheese using aromatic and medicinal plants and enterocin: A comparative study[J]. Letters in Applied Microbiology,2023,76(7):ovad076.

[63] ELSHERIF W M, TALAAT AL SHRIEF L M. Effects of three es‐sential oils and their nano‐emulsions on Listeria monocytogenes and Shigella flexneri in Egyptian Talaga cheese[J].International Journal of Food Microbiology,2021,355:109334.

[64] ERKAYA‐KOTAN T, GÜRBÜZ Z, DAĞDEMIR E, et al. Utiliza‐tion of edible coating based on quince seed mucilage loaded with thyme essential oil: Shelf life, quality, and ACE‐inhibitory activity efficiency in Kaşar cheese[J].Food Bioscience,2023,54:102895.

[65] CHEN S X,WANG P Y,MENG W Z,et al.Preparation and charac‐terization of PLA‐lemon essential oil nanofibrous membranes for the preservation of Mongolian cheese[J].Journal of Food Processing and Preservation,2022,46(5):e16552.

Antibacterial Activity of Plant Essential Oil and Its Application in Food Preservation

HE Xiyuan1,2,KONG Xiang1,2,LIU Zao1,2,QI Yonggang1,2,WU Yongkang2,3,LIU Zhijie1,2*
(1.Research Center of Food Fermentation Engineering and Technology of Hubei,School of Life and Health Sciences,Hubei University of Technology,Wuhan 430068,Hubei,China;2.Hubei Fermented VegeTableEnterprise‐School Joint Innovation Center,Jingmen 431821,Hubei,China;3.Huibei Juhui Agricullture Co.,Ltd.,Jingmen 431821,Hubei,China)

Abstract:Plant essential oils are aromatic liquids extracted from plants,containing various active components.Due to their excellent antibacterial activity,plant essential oils have become ideal natural preservatives and are widely used in food preservation. This study reviewed the extraction methods,antibacterial activity,antibacte‐rial mechanisms,and applications of plant essential oils in food preservation over the past three years,provid‐ing a reference for further development of plant essential oils as natural preservatives.

Key words:plant essential oil;extraction method;antibacterial activity;antibacterial mechanism;food preser‐vation

DOI:10.12161/j.issn.1005‐6521.2025.12.027

基金项目:湖北省重点研发计划项目(2023BBB010);湖北省自然科学基金项目(2023AFB927)

作者简介:何锡媛(1998—),女(汉),硕士,研究方向:食品生物技术。

*通信作者:柳志杰(1988—),男(汉),教授,研究方向:食品生物技术。

引文格式:

何锡媛,孔祥,刘枣,等.植物精油的抗菌活性及其在食品保鲜中的应用[J].食品研究与开发,2025,46(12):211‐216.

HE Xiyuan,KONG Xiang,LIU Zao,et al.Antibacterial Activity of Plant Essential Oil and Its Application in Food Preserva‐tion[J].Food Research and Development,2025,46(12):211‐216.

加工编辑:张昱

收稿日期:2024‐04‐22