益生菌的表面成分影响其胃肠道黏附定殖的研究进展

林夫欣,王宇,孙嘉蕾,吕依蔓,韩雪*

(哈尔滨工业大学,黑龙江 哈尔滨 150000)

摘 要: 益生菌能够黏附定殖在人体肠道细胞上是充分发挥其益生作用的重要前提。益生菌的表面成分作为黏附因子与黏附位点间的相互作用是影响益生菌黏附定殖的关键环节。在黏附位点上与黏附因子相互作用的受体,除了黏液层中的某些物质,还有肠道细胞上分泌的胞外物质。益生菌表面蛋白类和非蛋白类的黏附因子具有黏附特异性,通过调控黏附因子的表达可以促进益生菌的肠道黏附定殖。该文对近年来关于肠道黏附位点的研究情况进行综述,对生物膜形成过程中部分黏附因子的表达与黏附关系进行分析,为黏附因子更好地在人体内发挥益生价值提供参考,为探究生物膜的形成对黏附的影响奠定理论基础。

关键词: 益生菌;肠道;黏附位点;黏附因子;表面成分

益生菌是一种对人体健康有益的非致病性微生物,在保持肠道内细菌的平衡、减少致病性细菌、降低血清胆固醇水平、提高乳糖耐受性、调节人体免疫功能等方面发挥重要作用。最常用作益生菌的微生物菌株属于革兰氏阳性菌属,大多数是乳酸菌,例如乳杆菌、乳球菌等,此外,还包括酵母菌、双歧杆菌、枯草杆菌、大肠杆菌益生菌菌株等[1-3]。益生菌的表面特性,如疏水性、聚集能力、黏附能力、定殖能力等是益生菌菌株特性的关键特征[4]

益生菌的黏附定殖能力是指其在胃肠道中暂时或永久存活并生长繁殖至足够数量的能力[5],益生菌的黏附能力是益生菌在人体肠道中稳定定殖的关键,也是益生菌发挥作用的前提,提高益生菌在肠道上的黏附定殖能力对充分发挥其益生功能有重要的意义。益生菌通过非特异性物理相互作用(如范德华力、静电斥力等)可逆地吸附在肠道黏膜上,随后通过黏附素(通常是锚定在细胞表面的蛋白质)和互补受体之间的特定相互作用,使益生菌在肠道上黏附定殖[3,5]。此过程与生物膜的形成过程相似,生物膜是指黏附在固相表面的微生物通过分泌胞外聚合物将细胞包裹,形成具有一定空间结构的细菌聚集体,是一种高度水合的极性混合物,通过聚合物之间的非共价结合来保证基质的稳定性。生物膜生长阶段会产生胞外聚合物,主要包括胞外蛋白、胞外多糖 (exopoly saccharides,EPS)、胞外DNA(extracellular DNA,eDNA)等,有研究发现这些胞外物质对菌体的黏附也存在一定的促进作用,但是其促进黏附的机制还有待进一步的研究[6]

1 益生菌的肠道黏附位点

口服益生菌可以促进肠道形成更健康的微生物群,但在益生菌到达胃肠道的结合位点前,口服益生菌的生物活性受到包括胃酸、胆盐和降解酶等在内的挑战,一般通过将益生菌微胶囊化对其进行保护。人体肠道表面存在错综复杂的微生物群落,共同调控着人体的代谢活动。益生菌进入回肠和结肠,需要与肠道内生的菌群竞争黏附位点[7-8]。人体的肠壁由浆膜层、肌层、黏膜和黏膜下层4 层组成。肠道黏膜是大多数菌体的黏附位点,病原菌黏附在黏膜上造成肠道感染,益生菌黏附在黏膜上可以更好地发挥益生功能。肠道黏膜的结构如图1 所示。

图1 肠道黏膜结构
Fig.1 Structure of intestinal mucosa

黏膜肌层、固有层和上皮细胞是肠道黏膜的重要组成部分。上皮细胞是黏膜的最外侧,上皮细胞主要由吸收细胞、杯状细胞和少量内分泌细胞组成,上皮细胞可分泌一种称为黏液的复杂糖蛋白混合物,是黏液层的主要成分,保护肠上皮细胞免受食物和消化分泌物的损害,被认为是益生菌在胃肠道黏附的关键位点。黏液主要由糖基化的黏蛋白(mucin,Muc)和糖脂以及抗体、离子、膳食成分和水等组成[9]。其中Muc 与黏蛋白黏附因子相互作用是菌体主要的黏附机制,Muc 中的O-葡聚糖结构多样而复杂,主要由含有α 和β 连接的N-乙酰半乳糖胺、半乳糖和N-乙酰氨基葡萄糖的核心1-4 黏液型O-葡聚糖组成。该核心结构进一步延长,并经常被岩藻糖和唾液酸糖残基分别通过α-1,2/3/4 和α-2,3/6 键修饰[10]。结肠被最厚的黏液层覆盖,是微生物密度最高的地方[11],黏液层主要的黏蛋白为Muc2。有研究表明,对肠上皮细胞具有高黏附性的菌株不一定对黏液也具有高黏附性[12]。细胞外基质作为黏膜另一个主要成分,由层黏连蛋白、蛋白聚糖、纤维连接蛋白、Ⅳ胶原蛋白等组成。白色念珠菌的感染会破坏黏膜结构,导致基底膜和细胞外基质 (extracellular matrix,ECM) 成分的出现,例如纤连蛋白 (fibronectin,FN)、层黏连蛋白 (laminin,LN) 和玻连蛋白(vitronectin,VTR),这些成分在暴露时会为病原体提供额外的黏附位点[13]。Chaffanel 等[14]发现了唾液链球菌表面蛋白的3 个结构域不参与人肠道上皮细胞的黏附,但可能与人体细胞外基质蛋白的黏附有关。通常,益生菌可以与致病菌争夺黏附位点从而达到抑菌的效果,人的肠道存在一定的抗外来物定殖的能力,有的益生菌在被人体摄入后不久会随粪便排出结肠,无法在肠道中充分停留[15]。因此,良好的定殖能力是益生菌在肠道更好地发挥益生作用的关键因素。

2 黏附因子

益生菌通过其表面的黏附因子实现在肠道的黏附[16],如图2 所示。

图2 益生菌肠道黏附
Fig.2 Intestinal adhesion of probiotics

益生菌部分细胞表面黏附因子如表1 所示。

表1 益生菌肠道黏附因子与黏附受体
Table 1 Adhesion factors and receptors of probiotics in the intestine

黏附因子黏液结合蛋白(mucus-binding protein,MUB)CmbA黏液结合因子(mucus-binding factor,MBF)菌毛蛋白SpaCBA表层蛋白(surface layer protein,SLP)纤连蛋白结合蛋白FbpA黏蛋白结合蛋白MucBP胶原蛋白结合蛋白 CnB黏膜黏附增强蛋白MapA促聚集因子APFs促聚集因子AggLb烯醇化酶(enolase,ENO)3-磷酸甘油醛脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)延伸因子Tu(elongation factors TU,EF-TU)伴侣蛋白GroEL谷氨酰胺合成酶葡萄糖-6-磷酸异构酶胆碱结合蛋白CbpA碱性膜蛋白A甘露糖特异性黏附蛋白黏附和生物膜调节剂MabA EPS脂磷壁酸鞭毛菌株罗氏乳杆菌ATCC PTA 6475鼠李糖乳杆菌GG鼠李糖乳杆菌GG植物乳杆菌DA100嗜酸乳杆菌NCFM发酵乳杆菌MBD93罗伊氏乳杆NCIB 11951罗伊氏乳杆菌格氏乳杆菌SBT2055副干酪乳杆菌植物乳杆菌299v植物乳杆菌299v植物乳杆菌ATCC 8014,CS23 ,CS242双歧杆菌罗伊氏乳杆菌ST1罗伊氏乳杆菌ST1唾液乳杆菌REN乳酸乳球菌 IgG植物乳杆菌鼠李糖乳杆菌GG肠道乳酸菌罗伊氏乳杆菌 JN101益生菌大肠杆菌Nissle 1917黏附受体Caco-2 细胞和黏液肠黏膜的V 型胶原蛋白黏液和胶原蛋白上皮细胞和细胞外基质成分肠道细胞黏蛋白聚糖胶原蛋白人肠上皮细胞纤连蛋白胶原蛋白、纤连蛋白纤溶酶原和纤连蛋白纤溶酶原和纤连蛋白黏蛋白Caco-2 细胞I 型胶原蛋白和层黏连蛋白I 型胶原蛋白和层黏连蛋白烯醇化酶Caco-2 细胞和肠上皮细胞肠道细胞上的甘露糖残基肠上皮细胞和组织肠道细胞肠上皮细胞黏蛋白参考文献[17][18][19][20][21][22][9][23][24][4][25][25][26][27][28][28][29][30][31][32][33][34][35]

由表1 可知,黏附因子大多数为蛋白质。Buck等[36]通过敲除编码嗜酸乳杆菌NCFM 中的几种细胞表面因子(如黏蛋白结合蛋白、纤连蛋白结合蛋白和SLP)的基因,观察到乳杆菌对Caco-2 细胞的黏附显著降低,初步证明了编码这几种蛋白的基因可能均有助于嗜酸乳杆菌NCFM 在体外的黏附。Chaffanel 等[14]利用构建基因突变体F6-1 ΔsrtA,证实了唾液链球菌上的表面蛋白参与肠道细胞的黏附。Klotz 等[21]通过构建4 株嗜酸乳杆菌的S 层缺失突变体,4 株菌对Caco-2肠细胞、ECM 和黏蛋白的黏附能力均降低,证明了S层蛋白有助于菌体的肠道黏附。此外,Kumara 等[37]发现发酵乳杆菌中参与黏附人体组织的因子除了蛋白质,还有碳水化合物和脂磷壁酸等,其可与宿主细胞相互作用以影响黏附能力。

2.1 MUB

益生菌表面的MUB 可以与胃肠道上的黏液蛋白作用,此类蛋白具有典型的信号肽和C 末端的LPxTG基序,MUB 包含的结构域与MUB MucBP 相似,具有良好的黏液黏附能力。MUB 是通过与细菌细胞壁的肽聚糖层形成共价实现黏附[38]。Gunning 等[10]利用原子力显微镜揭示了MUB 通过连续展开的重复序表现出显著的黏附性能。与更常见的蛋白配体-碳水化合物受体相互作用相比,这种连续展开的重复序列可能更有利于MUB 与黏蛋白的高强度结合。MUB 是乳酸菌关键的黏附因子,常被作为乳酸菌益生功能评价的指标之一[39]。MUB 一般与Muc 相互作用,Dudík 等[40]向培养基中添加Muc 后,菌体对细胞的黏附性显著增强,罗伊氏乳杆菌E 中编码MUB 的基因mub 显著上调,而编码延伸因子Tu 的ef-tu 基因表达变化不显著,编码MapA 的基因mapA 显著下调。

2.2 SLP

细菌细胞壁的最外层一般是由表面的非共价键键合的半多孔晶体阵列组成,这些晶体阵列由称为SLP的自组装蛋白质亚基组成。SLP 的分子量为40~200 kDa,Wang 等[41]研究表明在益生菌植物乳杆菌中的SLP 的分子量为37 kDa,明显小于其他菌种,但是乳酸菌中的SLP 在细胞保护、细胞特异性拓扑结构的形成、黏附和聚集等方面具有不可忽视的作用,其中,最主要的功能是促进菌体的黏附[42]。SLP 存在于大多数的乳酸菌中,人们利用各种乳酸菌物种研究其黏附聚集的因素和机制,发现细胞表面蛋白,如SLP 和 促聚集因子APFs 参与了乳酸菌的黏附聚集[43]。Mazzeo等[44]采用鸟枪蛋白质组学方法,从意大利传统酵母中分离出的5 种不同短乳杆菌菌株的SLP 和S 层相关蛋白。SLP 对黏附的影响不仅因菌种而异,在属于同一种的菌株之间也存在差异。Alp 等[20]通过氯化锂处理去除5 株植物乳杆菌的SLP,测试它们的酶抗性、聚集特性、黏附能力,结果发现,除了魏斯氏菌DA 28,其他4 株菌的自聚集、共聚集、黏附能力均有不同程度的降低,植物乳杆菌DA140 的黏附能力影响中等,其中对植物乳杆菌DA100 的黏附能力影响最明显。乳酸菌的自聚集能力越强,其黏附能力越强。除去表面蛋白会降低乳酸菌的自聚集能力和黏附能力[45],然而,研究表明降低乳酸菌SLP 含量可以提高短乳杆菌的自聚集能力[46],这可能是通过影响短乳杆菌细胞表面不规则电荷的形成来影响短乳杆菌细胞的静电性质,从而导致聚集。表面蛋白、自聚集能力与黏附之间的关系有待进一步研究。

2.3 兼职蛋白

“兼职蛋白”是指具有两种或两种以上相互无关、独立的功能蛋白质,其中一种功能的失活不会影响另一种功能。研究表明,兼职蛋白中的ENO、GAPDH、EF-Tu、GroEL 等介导益生菌在人类肠道黏液或肠上皮细胞的黏附定殖[47]。ENO 是糖酵解的关键酶,广泛存在于所有物种中,具有进化保守性。之前的研究证明,致病菌中的ENO 介导病原菌对肠道的黏附[48]。Wei等[49]利用生物信息学分析表明该蛋白可以特异性结合ECM,从而促进细菌细胞与宿主细胞的黏附。GAPDH是1 种参与糖酵解的细胞质蛋白,其可在分泌后作为非锚定蛋白重新连接到细胞壁,并在乳酸杆菌与黏蛋白黏附期间充当兼职蛋白。高黏附性罗伊氏乳杆菌ZJ617 与低黏附性罗伊氏乳杆菌ZJ615 相比,GAPDH含量更高[50]。EF-TU 在增强益生菌的肠道黏附的同时,也抑制了一些致病菌(如大肠埃希菌、沙门氏菌等)与黏蛋白的结合能力[26],通过竞争性抑制或排斥,保护宿主免受感染[51]。杨乐等[52]通过基因重组和基因敲除证明唾液乳杆菌中的膜外蛋白延伸因子G 对唾液乳杆菌的黏附影响不大,却会促进致病菌金黄色葡萄球菌的黏附。GroEL 是1 种分子伴侣,通过结合和封装帮助新生或应激变性多肽的折叠,体外研究表明,GroEL 在双歧杆菌与宿主环境中的肠上皮细胞和黏蛋白的结合过程中起关键作用[53]

2.4 菌毛蛋白

菌毛是伸出细菌细胞外的细长蛋白质结构,存在于大多数的革兰氏阳性菌中。鼠李糖乳杆菌GG 中的SpaCBA 菌毛是黏附的关键因子,它是由3 个不同的菌毛蛋白亚基组成的异质聚合物,每个亚基在菌毛中都有特定的功能:主链SpaA 负责长度,基链SpaB 负责锚定,尖链SpaC 负责黏附。Tytgat 等[54]发现,鼠李糖乳杆菌GG 中的SpaC 蛋白通过竞争黏液结合位点有效地阻止潜在病原体与宿主结合。

除了上述常见的几种蛋白质类黏附素外,纤连蛋白结合蛋白、黏蛋白结合蛋白、胶原蛋白结合蛋白、黏膜黏附增强蛋白、表面聚集促进因子等表面蛋白可以作用在肠道表面,有利于益生菌的肠道定殖。

2.5 非蛋白质类

EPS 是存在于大多数细菌和真菌中的表面碳水化合物聚合物。EPS 通过形成生物膜并与其他微生物或宿主细胞交流,在帮助益生菌增强对GIT 恶劣条件的耐受性方面发挥着积极作用[55],但是EPS 对细菌黏附的影响似乎取决于益生菌种与菌种来源。在肺炎克雷伯菌中,通过调控成膜菌的yfiN 基因(环二鸟苷酸合成基因)和mrkJ 基因(环二鸟苷酸降解基因)的相对表达,促进环二鸟苷酸的合成,进而促进EPS 的合成,增加细菌的生物膜形成,同时有利于增加肺炎克雷伯菌的黏附定殖[56]。Živković 等[57]证明副干酪乳杆菌分泌的EPS 有利于肠上皮细胞的黏附。Lee 等[58]制成3 种植物乳杆菌的EPS 缺失突变株,与植物乳杆菌Lp90野生型菌株相比,突变菌株对Caco-2 细胞的黏附性有所提高。然而,植物乳杆菌WCFS1 和SF2A35B 的EPS 基因缺失并不影响它们的黏膜黏附。Honey 等[33]发现从蜜蜂肠道分离的植物乳杆菌KX519413 和KX519414,高效的EPS 不仅有助于生物被膜的形成,而且还能增强细菌在宿主肠道的黏附和定殖。磷壁酸是革兰氏阳性细菌细胞壁的重要组成部分,由磷酸糖醇重复单元组成,有助于细菌细胞表面的疏水特性和静电作用。磷壁酸分为脂磷壁酸和壁磷壁酸,其中,脂磷壁酸可以直接与肠细胞结合,促进其黏附作用[34],此外,植物乳杆菌的脂磷壁酸具有抑制鳗弧菌黏附鱼肠上皮细胞的能力[59]。鞭毛的黏附作用似乎受到黏附受体的影响,益生菌大肠杆菌Nissle 1917 菌株有血清型H1 的鞭毛,在菌体与人上皮细胞T24 和Caco-2 的黏附中不起作用,但可以介导菌体对LS174T 细胞分泌的黏蛋白的黏附[35]

3 生物膜的形成与黏附

生物膜是一种微生物的有组织的聚合体,是由微生物细胞聚集在自产生的胞外聚合物基质中形成的,分为可逆黏附阶段、表面定殖阶段、生物膜生长阶段、生物膜成熟阶段、细胞分散阶段,如图3 所示。

图3 生物膜形成过程示意图
Fig.3 Schematic diagram of biofilm formation process

胞外聚合物主要由EPS、蛋白质、脂质和eDNA 组成[60],可形成一种高度水合的极性混合物,通过聚合物之间的非共价结合来保证基质的稳定性。EPS 的黏附作用具有菌株特异性[56,58]。一些益生菌成膜过程中会分泌eDNA 到细胞表面并从细胞表面延伸,通过酸碱相互作用促进菌体黏附到非生物表面[59]。在致病菌中,黏附侵袭性大肠杆菌菌株比非黏附侵袭性菌株具有更高的生物膜生成能力[61]。Savijoki 等[62]把在浮游和成膜状态下益生菌鼠李糖杆菌GG 细胞表面相关蛋白进行了鉴定和比较,差异显著的蛋白有表面黏附素(如MBF、SpaC 菌毛蛋白和青霉素结合蛋白)、酶(糖苷水解酶、PrsA、PrtP、PrtR 和HtrA)和兼职蛋白(糖酵解、转录/翻译和应激相关蛋白、γ-蛋白、tRNA 合成酶、Clp家族蛋白、PepC、PepN 和PepA),其中和黏附相关的蛋白表达上调显著,说明具有成膜能力的菌黏附定殖能力高可能与生物膜形成过程中黏附相关基因的调控有关。 Liu 等[63]通过非靶向代谢组学分析发现,与游离状态下的类植物乳杆菌相比,成膜状态下的类植物乳杆菌可以促进分泌型IgA(SIgA)的产生,有研究在降结肠的黏液中检测到由SIgA 结合的多个细胞复合物,表明SIgA 可能促进益生菌黏附在胃肠道的黏液层[64]。群体感应(quorum sensing,QS)系统不仅可以促进乳酸菌在胃肠道中的黏附,还可以促进生物膜的成熟和ECM 的分泌[16]。因此,生物膜的形成以及形成中分泌的胞外物质与黏附之间的关系有待进一步研究。

4 展望

目前,国内外针对益生菌肠道黏附定殖率低的研究主要集中在乳酸菌胞外黏附因子对黏附作用机制。本文对近年来从肠道黏附位点、黏附因子的研究进展及存在的问题进行简要的总结,目前对益生菌的肠道黏附机制的研究主要围绕黏附因子与黏附受体互作展开,蛋白质类的黏附素研究相对较广,非蛋白质类的黏附素主要集中于EPS、脂磷壁酸、鞭毛等方面,对于一些其他的非蛋白质成分有待进一步研究。此外,初步分析了生物膜的形成与黏附能力的关系,为通过调控益生菌形成生物膜的关键因子提高其对肠道的黏附定殖能力提供理论参考。

参考文献:

[1] 于颖, 任昕淼, 付晓丹, 等. 肥胖小鼠肠道菌群对半乳甘露聚糖的响应与筛选[J]. 食品研究与开发, 2022, 43(20): 1-11.YU Ying, REN Xinmiao, FU Xiaodan, et al. Response of intestinal flora of obese mice to galactomannao-polysaccharide and its screening[J]. Food Research and Development, 2022, 43(20): 1-11.

[2] 曾扬, 梁雄燕, 刘晶, 等. 益生菌在动物胃肠道与呼吸道疾病中的作用研究进展[J]. 动物医学进展, 2023, 44(2): 89-93.ZENG Yang, LIANG Xiongyan, LIU Jing, et al. Progress on probiotics in animal gastrointestinal and respiratory diseases[J]. Progress in Veterinary Medicine, 2023, 44(2): 89-93.

[3] LI A Y, WANG M, ZHANG Y, et al. Complete genome analysis of Bacillus subtilis derived from yaks and its probiotic characteristics[J]. Frontiers in Veterinary Science, 2023, 9: 1099150.

[4] MILJKOVIC M, THOMAS M, SERROR P, et al. Binding activity to intestinal cells and transient colonization in mice of two Lactobacillus paracasei subsp. paracasei strains with high aggregation potential[J]. World Journal of Microbiology and Biotechnology, 2019, 35(6): 85.

[5] RUANO-GALLEGO D, FERNÁNDEZ L Á. Identification of nanobodies blocking intimate adherence of shiga toxin-producing Escherichia coli to epithelial cells[J]. Methods in Molecular Biology,2021, 2291: 253-272.

[6] LI W, WANG J J, QIAN H, et al. Insights into the role of extracellular DNA and extracellular proteins in biofilm formation of Vibrio parahaemolyticus[J]. Frontiers in Microbiology, 2020, 11: 813.

[7] BISHT S, SINGH K S, CHOUDHARY R, et al. Expression of fibronectin-binding protein of L. acidophilus NCFM and in vitro refolding to adhesion capable native-like protein from inclusion bodies[J]. Protein Expression and Purification, 2018, 145: 7-13.

[8] DEEPIKA G, CHARALAMPOPOULOS D. Surface and adhesion properties of lactobacilli[J]. Advances in Applied Microbiology,2010, 70: 127-152.

[9] MUSCARIELLO L, DE SIENA B, MARASCO R. Lactobacillus cell surface proteins involved in interaction with mucus and extracellular matrix components[J]. Current Microbiology, 2020, 77(12): 3831-3841.

[10] GUNNING A P, KAVANAUGH D, THURSBY E, et al. Use of atomic force microscopy to study the multi-modular interaction of bacterial adhesins to mucins[J]. International Journal of Molecular Sciences, 2016, 17(11): 1854.

[11] SICARD J F, LE BIHAN G, VOGELEER P, et al. Interactions of intestinal bacteria with components of the intestinal mucus[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: 387.

[12] MARKOWICZ C, SCHMIDT M T. Lactobacillus strains belonging to Casei Group display various adherence to enterocytes and mucus[J]. Acta Scientiarum Polonorum Technologia Alimentaria, 2015, 14(3): 247-255.

[13] SATALA D, KARKOWSKA-KULETA J, ZELAZNA A, et al. Moonlighting proteins at the candidal cell surface[J]. Microorganisms,2020, 8(7): 1046.

[14] CHAFFANEL F, CHARRON-BOURGOIN F, SOLIGOT C, et al.Surface proteins involved in the adhesion of Streptococcus salivarius to human intestinal epithelial cells[J]. Applied Microbiology and Biotechnology, 2018, 102(6): 2851-2865.

[15] ZMORA N, ZILBERMAN-SCHAPIRA G, SUEZ J, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features[J]. Cell, 2018,174(6): 1388-1405.e21.

[16] YU Y X, ZONG M L, LAO L F, et al. Adhesion properties of cell surface proteins in Lactobacillus strains in the GIT environment[J].Food & Function, 2022, 13(6): 3098-3109.

[17] JENSEN H, ROOS S, JONSSON H, et al. Role of Lactobacillus reuteri cell and mucus-binding protein A (CmbA) in adhesion to intestinal epithelial cells and mucus in vitro[J]. Microbiology, 2014,160(Pt 4): 671-681.

[18] VON OSSOWSKI I, SATOKARI R, REUNANEN J, et al. Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG[J]. Applied and Environmental Microbiology, 2011, 77(13): 4465-4472.

[19] KANT A, PALVA A, VON OSSOWSKI I, et al. Crystal structure of lactobacillar SpaC reveals an atypical five-domain pilus tip adhesin: Exposing its substrate-binding and assembly in SpaCBA pili[J].Journal of Structural Biology, 2020, 211(3): 107571.

[20] ALP D, KULEAŞAN H, KORKUT ALTıNTAŞ A. The importance of the S-layer on the adhesion and aggregation ability of Lactic acid bacteria[J]. Molecular Biology Reports, 2020, 47(5): 3449-3457.

[21] KLOTZ C, GOH Y J, O'FLAHERTY S, et al. S-layer associated proteins contribute to the adhesive and immunomodulatory properties of Lactobacillus acidophilus NCFM[J]. BMC Microbiology,2020, 20(1): 248.

[22] CHATTERJEE M, PUSHKARAN A C, VASUDEVAN A K, et al.Understanding the adhesion mechanism of a mucin binding domain from Lactobacillus fermentum and its role in enteropathogen exclusion[J]. International Journal of Biological Macromolecules, 2018,110: 598-607.

[23] SINGH T P, TEHRI N, KAUR G, et al. Cell surface and extracellular proteins of potentially probiotic Lactobacillus reuteri as an effective mediator to regulate intestinal epithelial barrier function[J]. Archives of Microbiology, 2021, 203(6): 3219-3228.

[24] NISHIYAMA K, NAKAZATO A, UENO S, et al. Cell surface-associated aggregation - promoting factor from Lactobacillus gasseri SBT2055 facilitates host colonization and competitive exclusion of Campylobacter jejuni[J]. Molecular Microbiology, 2015, 98(4): 712-726.

[25] GLENTING J, BECK H C, VRANG A, et al. Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins[J]. Microbiological Research, 2013, 168(5): 245-253.

[26] DHANANI A S, BAGCHI T. The expression of adhesin EF-Tu in response to mucin and its role in Lactobacillus adhesion and competitive inhibition of enteropathogens to mucin[J]. Journal of Applied Microbiology, 2013, 115(2): 546-554.

[27] SUN Y, ZHU D-Q, ZHANG Q-X, et al. The expression of groel protein amplified from bifidobacterium animalis subsp lactis klds 2.0603 and its role in competitive adhesion to Caco-2[J]. Food Biotechnology, 2016, 30(4): 292-305.

[28] KAINULAINEN V, LOIMARANTA V, PEKKALA A, et al. Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37[J]. Journal of Bacteriology, 2012, 194(10):2509-2519.

[29] WANG R, JIANG L, ZHANG M, et al. The adhesion of Lactobacillus salivarius REN to a human intestinal epithelial cell line requires S-layer proteins[J]. Scientific Reports, 2017, 7: 44029.

[30] ZADRAVEC P, MAVRIČ A, BOGOVIČ MATIJASIC B, et al. Engineering BmpA as a carrier for surface display of IgG-binding domain on Lactococcus lactis[J]. Protein Engineering, Design & Selection: PEDS, 2014, 27(1): 21-27.

[31] HOLST B, GLENTING J, HOLMSTRØM K, et al. Molecular switch controlling expression of the mannose-specific adhesin, msa, in Lactobacillus plantarum[J]. Applied and Environmental Microbiology, 2019, 85(10): e02954-e02918.

[32] VÉLEZ M P, PETROVA M I, LEBEER S, et al. Characterization of MabA, a modulator of Lactobacillus rhamnosus GG adhesion and biofilm formation[J]. FEMS Immunology & Medical Microbiology,2010, 59(3): 386-398.

[33] HONEY C C, KEERTHI T R. Probiotic potency of Lactobacillus plantarum KX519413 and KX519414 isolated from honey bee gut[J]. FEMS Microbiology Letters, 2018, 365(4): fnx285.

[34] CAI G L, WU D H, LI X M, et al. Levan from Bacillus amyloliquefaciens JN4 acts as a prebiotic for enhancing the intestinal adhesion capacity of Lactobacillus reuteri JN101[J]. International Journal of Biological Macromolecules, 2020, 146: 482-487.

[35] TROGE A, SCHEPPACH W, SCHROEDER B O, et al. More than a marine propeller—the flagellum of the probiotic Escherichia coli strain Nissle 1917 is the major adhesin mediating binding to human mucus[J]. International Journal of Medical Microbiology:IJMM, 2012, 302(7-8): 304-314.

[36] BUCK B L, ALTERMANN E, SVINGERUD T, et al. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM[J]. Applied and Environmental Microbiology, 2005, 71(12):8344-8351.

[37] KUMARA S S, BASHISHT A, VENKATESWARAN G, et al. Characterization of novel Lactobacillus fermentum from curd samples of indigenous cows from malnad region, Karnataka, for their aflatoxin B1 binding and probiotic properties[J]. Probiotics and Antimicrobial Proteins, 2019, 11(4): 1100-1109.

[38] MACKENZIE D A, TAILFORD L E, HEMMINGS A M, et al. Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity[J]. The Journal of Biological Chemistry, 2009, 284(47): 32444-32453.

[39] VALLEDOR S J D, DIOSO C M, BUCHELI J E V, et al. Characterization and safety evaluation of two beneficial, enterocin-producing Enterococcus faecium strains isolated from kimchi, a Korean fermented cabbage[J]. Food Microbiology, 2022, 102: 103886.

[40] DUDÍK B, KIŇOVÁ SEPOVÁ H, BILKA F, et al. Mucin pre-cultivated Lactobacillus reuteri E shows enhanced adhesion and increases mucin expression in HT-29 cells[J]. Antonie Van Leeuwenhoek, 2020, 113(8): 1191-1200.

[41] WANG H, WEI C X, MIN L, et al. Good or bad: Gut bacteria in human health and diseases[J]. Biotechnology & Biotechnological Equipment, 2018, 32(5): 1075-1080.

[42] ALP D. Strain-dependent effectivity, and protective role against enzymes of S-layers in Lactiplantibacillus plantarum strains[J]. Journal of Basic Microbiology, 2022, 62(5): 555-567.

[43] HYNÖNEN U, PALVA A. Lactobacillus surface layer proteins:Structure, function and applications[J]. Applied Microbiology and Biotechnology, 2013, 97(12): 5225-5243.

[44] MAZZEO M F, REALE A, DI RENZO T, et al. Surface layer protein pattern of Levilactobacillus brevis strains investigated by proteomics[J]. Nutrients, 2022, 14(18): 3679.

[45] DU Y, LI H, SHAO J C, et al. Adhesion and colonization of the Probiotic Lactobacillus plantarum HC-2 in the intestine of Litopenaeus vannamei are associated with bacterial surface proteins[J]. Frontiers in Microbiology, 2022, 13: 878874.

[46] SAITO K, TOMITA S, NAKAMURA T. Aggregation of Lactobacillus brevis associated with decrease in pH by glucose fermentation[J]. Bioscience, Biotechnology, and Biochemistry, 2019, 83(8): 1523-1529.

[47] RODRÍGUEZ-SAAVEDRA C, MORGADO-MARTÍNEZ L E, BURGOS-PALACIOS A, et al. Moonlighting proteins: The case of the hexokinases[J]. Frontiers in Molecular Biosciences, 2021, 8:701975.

[48] HAN S Y, LU Y M, XIE J J, et al. Probiotic gastrointestinal transit and colonization after oral administration: A long journey[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11: 609722.

[49] WEI X, WANG S M, ZHAO X N, et al. Proteomic profiling of Bifidobacterium bifidum S17 cultivated under in vitro conditions[J].Frontiers in Microbiology, 2016, 7: 97.

[50] DENG Z X, DAI T, ZHANG W M, et al. Glyceraldehyde-3-phosphate dehydrogenase increases the adhesion of Lactobacillus reuteri to host mucin to enhance probiotic effects[J]. International Journal of Molecular Sciences, 2020, 21(24): 9756.

[51] SUBRAMANIYAN V, GURUMURTHY K. Diversity of probiotic adhesion genes in the gastrointestinal tract of goats[J]. Journal of Cellular Biochemistry, 2019, 120(8): 12422-12428.

[52] 杨乐, 杨柳, 李月, 等. 唾液乳杆菌膜外蛋白对金黄色葡萄球菌黏附的影响[J]. 食品科学, 2022, 43(6): 96-103.YANG Le, YANG Liu, LI Yue, et al. Effect of an outer membrane protein of Lactobacillus salivarius on the adhesion of Staphylococcus aureus[J]. Food Science, 2022, 43(6): 96-103.

[53] NISHIYAMA K, TAKAKI T, SUGIYAMA M, et al. Extracellular vesicles produced by Bifidobacterium longum export mucin-binding proteins[J]. Applied and Environmental Microbiology, 2020, 86(19): e01464-e01420.

[54] TYTGAT H L P, DOUILLARD F P, REUNANEN J, et al. Lactobacillus rhamnosus GG outcompetes Enterococcus faecium via mucusbinding pili: Evidence for a novel and heterospecific probiotic mechanism[J]. Applied and Environmental Microbiology, 2016, 82(19): 5756-5762.

[55] OERLEMANS M M P, AKKERMAN R, FERRARI M, et al. Benefits of bacteria-derived exopolysaccharides on gastrointestinal microbiota, immunity and health[J]. Journal of Functional Foods,2021, 76: 104289.

[56] ZHANG C L, WANG C, XIU Z L. Regulation of c-di-GMP in biofilm formation of Klebsiella pneumoniae in response to antibiotics and probiotic supernatant in a chemostat system[J]. Current Microbiology, 2021, 78(1): 133-143.

[57] ŽIVKOVIĆ M, MILJKOVIĆ M S, RUAS-MADIEDO P, et al. EPSSJ exopolisaccharide produced by the strain Lactobacillus paracasei subsp. paracasei BGSJ2-8 is involved in adhesion to epithelial intestinal cells and decrease on E. coli association to caco-2 cells[J].Frontiers in Microbiology, 2016, 7: 286.

[58] LEE I C, CAGGIANIELLO G, VAN SWAM I I, et al. Strain-specific features of extracellular polysaccharides and their impact on Lactobacillus plantarum-host interactions[J]. Applied and Environmental Microbiology, 2016, 82(13): 3959-3970.

[59] GAO Q X, GAO Q, MIN M H, et al. Ability of Lactobacillus plantarum lipoteichoic acid to inhibit Vibrio anguillarum-induced inflammation and apoptosis in silvery pomfret (Pampus argenteus) intestinal epithelial cells[J]. Fish & Shellfish Immunology, 2016, 54: 573-579.

[60] POWELL L C, PRITCHARD M F, FERGUSON E L, et al. Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides[J]. NPJ Biofilms and Microbiomes, 2018, 4: 13.

[61] MARTINEZ-MEDINA M, NAVES P, BLANCO J, et al. Biofilm formation as a novel phenotypic feature of adherent-invasive Escherichia coli (AIEC)[J]. BMC Microbiology, 2009, 9: 202.

[62] SAVIJOKI K, NYMAN T A, KAINULAINEN V, et al. Growth mode and carbon source impact the surfaceome dynamics of Lactobacillus rhamnosus GG[J]. Frontiers in Microbiology, 2019, 10: 1272.

[63] LIU L, GUO S Y, CHEN X, et al. Metabolic profiles of Lactobacillus paraplantarum in biofilm and planktonic states and investigation of its intestinal modulation and immunoregulation in dogs[J].Food & Function, 2021, 12(12): 5317-5332.

[64] LEÓN E D, FRANCINO M P. Roles of secretory immunoglobulin A in host-microbiota interactions in the gut ecosystem[J]. Frontiers in Microbiology, 2022, 13: 880484.

Research Progress in the Influences of Surface Components of Probiotics on Adhesion and Colonization in the Host Intestinal Tract

LIN Fuxin,WANG Yu,SUN Jialei,LÜ Yiman,HAN Xue *
(Harbin Institute of Technology,Harbin 150000,Heilongjiang,China)

Abstract: The adhesion and colonization of probiotics on human intestinal cells were an important prerequisite for giving full play to the probiotic effects. The interaction between the surface components as adhesion factors and sites of probiotics was the key link affecting the adhesion and colonization of probiotics. The receptors interacting with adhesion factors at the adhesion sites included not only some substances in the mucous layer but also extracellular substances secreted by intestinal cells. The protein and non-protein adhesion factors on probiotic surface have adhesion specificity,and they can promote the adhesion and colonization of probiotics by regulating the expression of adhesion factors. The recent studies about intestinal adhesion sites were reviewed,and the relationship between the expression of adhesion factors and adhesion during biofilm formation was analyzed,which would provide a reference for giving full play to the role of adhesion factors in the human body and lay a theoretical foundation for exploring the influence of biofilm formation on adhesion.

Key words: probiotics;intestinal tract;adhesion site;adhesion factor;surface component

DOI:10.12161/j.issn.1005-6521.2024.16.027

作者简介:林夫欣(1997—),女(汉),硕士研究生,研究方向:乳酸菌肠道黏附。

*通信作者:韩雪(1978—),女(汉),教授,博士,研究方向:食品发酵,优质乳酸菌的选育及其产业化。

引文格式:

林夫欣,王宇,孙嘉蕾,等. 益生菌的表面成分影响其胃肠道黏附定殖的研究进展[J]. 食品研究与开发,2024,45(16):213-219.

LIN Fuxin,WANG Yu,SUN Jialei,et al. Research Progress in the Influences of Surface Components of Probiotics on Adhesion and Colonization in the Host Intestinal Tract[J]. Food Research and Development,2024,45(16):213-219.

加工编辑:孟琬星

收稿日期:2023-04-09