随着社会的发展和饮食结构的改变,饮食方式逐渐转变为以高脂肪、高糖、高蛋白等为特点的低膳食纤维饮食[1],但其被认为可促进炎症性肠病(inflammatory bowel disease,IBD)的发生与发展[2]。IBD 作为一种慢性、多因素、反复发作的肠道疾病,病变部位主要在结肠[3]。尽管其确切发病机制仍不清楚,但大量数据表明,IBD 与肠道屏障功能受损、肠道菌群失衡及其代谢产生的短链脂肪酸(short-chain fatty acid,SCFA)水平显著降低、并由此引发的黏膜免疫反应失调有关[4]。
肠道菌群代谢产生的SCFA 主要是乙酸盐、丙酸盐和丁酸盐,它们可以作为结肠和回肠细胞的关键能量来源影响肠上皮屏障和防御功能、调节T/B 细胞的分化以及参与免疫系统的调节,对缓解肠道炎症起到积极的作用[5-6]。大量研究已表明,提高结肠部位SCFA 水平对于缓解IBD 具有积极作用[6]。然而SCFA 具有难闻和持久的气味,适口性差,且其代谢快、易被小肠吸收,口服或灌胃无法在结肠部位发挥有效作用。因此,需要一种更可控和更实用的递送策略向结肠输送SCFA。
膳食纤维作为一类不可被胃肠道消化吸收的碳水化合物,其主要在结肠部位被肠道菌群分解代谢[5]。基于膳食纤维载体的结肠靶向性SCFA 递送体系能够通过重塑肠道菌群、提高结肠部位SCFA 水平、改善肠上皮屏障和防御功能、调节机体免疫反应等途径恢复肠道稳态[5-6],其展现出的良好缓解IBD 作用引起了人们的广泛关注和研究。本文简要介绍饮食参与IBD 的途径,重点阐述膳食纤维基靶向结肠递送短链脂肪酸体系的策略和缓解IBD 的作用机制,以期为开发预防及缓解IBD 的新型多功能膳食纤维食品提供参考及思路。
研究表明,低膳食纤维饮食可通过改变肠道菌群组成、SCFA 水平、肠黏膜屏障作用和免疫系统稳态等途径参与IBD 的产生和发展[7]。与健康者相比,IBD患者的结肠pH 值显著降低至2.3~5.5,且表现出肠道菌群紊乱、SCFA 水平降低、肠道屏障功能受损和促炎因子水平升高等特点,具体变化如图1 所示。因此,基于IBD 患者肠道内环境的变化,合理设计和补充膳食纤维是缓解IBD 的重要策略之一。
图1 结肠炎的肠道内环境变化
Fig.1 The changes of intestinal environment in colitis
Th1 为辅助性T 细胞1(T helper cell 1);Th2 为辅助性T 细胞2(T helper cell 2);TNF-α 为肿瘤坏死因子-α(tumor necrosis factor-α);IL 为白细胞介素(interleukin);INF-γ 为干扰素-γ(interferon-γ);TGF-β 为转化生长因子-β(transforming growth factor-β)。
人体肠道菌群主要由厚壁菌门、拟杆菌门、变形菌门和放线菌门组成[8]。健康个体的肠道菌群表现出种类繁多、功能复杂的特点,且拟杆菌门和厚壁菌门占主导地位[9]。相较之下,IBD 患者的肠道菌群多样性呈显著下降的趋势[10]。其中,具有抗炎能力的拟杆菌和厚壁菌的丰度明显减少,特别是产丁酸盐的细菌,如梭状芽孢菌簇(Clostridium clusters)IV、XIVa、XVIII,普拉梭菌(Faecalibacterium prausnitzii)和罗氏菌属(Roseburia)等[11];与许多疾病密切相关的变形杆菌和放线菌的丰度明显增加,包括埃希氏菌、黏附入侵性大肠杆菌和肠杆菌等[12]。因此,肠道菌群与IBD 的产生和发展密切相关。低膳食纤维饮食通过影响肠道菌群结构加剧肠道炎症的发展。高脂饮食可引起具有促炎作用的厚壁菌和变形杆菌增加,具有保护作用的细菌(如拟杆菌)减少,进而加重IBD 的症状[13]。高糖饮食则会导致黏液降解细菌丰度增加,特别是嗜黏蛋白阿克曼氏菌(Akkermansia muciniphila)和脆弱拟杆菌(Bacteroides fragilis),从而引起肠黏膜屏障作用受损;同时抑制具有抗炎作用的毛螺菌科(Lachnospiraceae)和乳酸杆菌科(Lactobacillaceae)的增殖,导致结肠炎易感性增加[14]。近期的研究发现,蛋白质的摄入量和种类对IBD 患者有显著的影响。与植物蛋白相比,动物蛋白的高摄入可引起肠球菌属、链球菌属和埃希里氏菌属的相对丰度增加,致使铵、硫化氢、对甲酚和苯酚等有害物质增加,损害结肠细胞和肠道屏障功能[12,15]。这些结果表明,低膳食纤维饮食通过引起肠道菌群的紊乱促进IBD 的发展。
SCFA 是由特定的肠道菌群利用碳水化合物代谢产生的,如丁酸盐主要是由厚壁菌门代谢产生,拟杆菌门代谢生成的SCFA 以乙酸盐和丙酸盐为主,它们在体内发挥抗炎、调节肠道免疫反应、增强肠黏膜屏障等作用[16]。特别是丁酸盐有助于建立针对致病菌啮齿枸橼酸杆菌(Citrobacter rodentium)的免疫耐受、增加调节性T 细胞(regulatory cells,Treg)数量、调节巨噬细胞的分化并抑制促炎因子的释放[16-17]。健康人体肠道中乙酸盐、丙酸盐和丁酸盐水平较高,浓度比例约为3∶1∶1[18]。高糖和高脂肪的低膳食纤维饮食可引起SCFA 水平降低以及肠黏膜生态失调,导致结肠炎易感性的增加[19]。近年来研究发现,高盐饮食通过降低小鼠肠道内乳酸杆菌丰度和抑制丁酸盐的产生,引发黏膜免疫功能受损,从而促进结肠炎的发展[20]。与健康人群相比,IBD患者的总SCFA、乙酸盐、丙酸盐和丁酸盐水平均呈不同程度的降低[21]。因此,提高肠道SCFA 的水平,特别是丁酸盐含量对缓解IBD 具有积极作用。
IBD 患者肠道组织一般会出现杯状细胞数量减少、防御素生成量降低及黏液蛋白降解等现象,进而导致肠黏膜屏障功能受损,肠道通透性增加[22-23]。肠黏膜屏障是肠道免疫系统的第一道防线,由黏液层和肠上皮细胞组成,可将肠道菌群和潜在病原体与黏膜免疫细胞及全身循环系统隔开,其中,黏液层是由大量带负电荷的黏蛋白组成的双层结构,松散的外层为肠道共生菌提供定殖空间,致密的内层可防止细菌的侵入[24-25]。健康肠道的肠上皮细胞有序排列并被黏液层覆盖,同时通过上皮细胞的紧密连接来保持肠道屏障的选择透过性[26]。高脂饮食会减少杯状细胞数量,降低隐窝深度,下调紧密连接蛋白的表达量,进而引起肠上皮屏障功能受损,使血清中的白细胞介素-1β(interleukin-1β,IL-1β)、TNF-α、白细胞介素-6(interleukin-6,IL-6)及干扰素-γ 浓度增加,进而诱发结肠炎[27-28]。高糖饮食可诱导小鼠肠上皮细胞的损伤,增加促炎因子IL-6、TNF-α 的表达并促进淋巴细胞和中性粒细胞浸润到固有层,加剧肠道炎症[14,29]。此外,研究发现高蛋白饮食会使黏蛋白降解细菌丰度增加,导致肠黏液层变薄,加重IBD[30]。可见,改善肠黏膜屏障作用、抑制促炎因子的表达是缓解IBD 的潜在靶点。
递送SCFA 到结肠部位的基本原则是防止它们因上消化道消化或吸收而损失,进而有效输送到结肠的炎症部位,发挥治疗作用[31]。目前,以物理封装和共价结合的方式开发具有不同功能特性和形式的膳食纤维递送体系已用于SCFA 的靶向结肠递送,包括微胶囊、乳液、凝胶、纳米颗粒等。膳食纤维靶向结肠递送SCFA 的常见形式及递送效率如表1 所示。
表1 膳食纤维靶向结肠递送SCFA 的常见形式及递送效率
Table 1 Common forms and delivery efficiency of dietary fiber-based colon-targeted delivery SCFA system
体系物理封装递送体系递送形式微胶囊水凝胶乳液共价结合递送体系纳米颗粒载体材料γ-环糊精β-环糊精魔芋低聚糖芹菜纤维素果胶纤维素纳米晶体淀粉低聚果糖菊粉参考文献[32][33][34][35][36][37][38][39][40]水凝胶递送效率回肠和升结肠每克粉末分别检出426 μmol 和1 189 μmol 的丁酸盐在模拟大肠消化期间,三丁醇释放约84.96%封装1.09%丁酸钠的凝胶,在模拟肠液中2 h 内丁酸盐释放率79%SCFA 的最大负载率接近80%,其释放速率可由超声处理调控果胶基乳液在模拟小肠消化中仅释放47.7%的丙酸体外模拟消化试验显示,约65%SCFA 有望递送至结肠部位丙酰化淀粉经体外发酵产生的丙酸盐浓度(13.68~21.10 mmol/L)随取代度的增加而逐渐增加摄入丁酰化低聚果糖小鼠盲肠内平均丁酸盐平均浓度从1.65 mmol/L 提高到6.65 mmol/L体外模拟消化下,SCFA-菊粉偶联物未释放SCFA;体外发酵24 h,乙酰化、丙酰化和丁基化菊粉的总SCFA 产量分别增加到19.7、20.0、24.1 μmol/100 mg 菊粉丁酰化木聚糖显著增加结肠炎小鼠肠道内丁酸盐浓度且丁酸盐浓度超过15 μmol/g低于10%的丁酸盐在无菌小鼠胃内被释放,然后在盲肠和结肠中释放大部分丁酸盐[41][42]微胶囊木聚糖N-(2-羟乙基)甲基丙烯酰胺β-环糊精在小肠内容物中仅释放5.8%的丁酸,在结肠内容物中释放丁酸高达38.4%[43]
物理封装递送体系主要是将SCFA 包埋在载体内部,可分为水凝胶、乳液以及微胶囊递送体系。水凝胶因优异的吸水能力、机械强度和生物相容性被广泛用于活性物质的递送。以芹菜纤维素水凝胶作为SCFA的载体,可通过超声波按需控制SCFA 的释放[35]。乳液以可控的液滴尺寸、高的比表面积和良好的口服生物利用度被用于SCFA 的靶向递送。以果胶、纳米纤维素、壳聚糖和羧甲基纤维素等膳食纤维构建乳液可避免SCFA 在胃中消化并转运至结肠消化和释放[36-37,44]。除了水凝胶和乳液,微胶囊递送体系也用于SCFA 的封装和递送。以环糊精为壁材制备的微胶囊能够很好地掩盖SCFA 刺激性的气味并避免其在胃酸环境下的降解,靶向递送SCFA 至结肠部位[32,45]。
丁酸、丙酸和乙酸的羧基基团与多糖或低聚糖的羟基通过酯键结合,形成的酰化形式的多糖或低聚糖具有较好的适口性,已被用于SCFA 的靶向递送[46-47]。肠道菌群一般含有各种代谢相关的酶,特别是双歧杆菌和乳酸杆菌会释放各种与碳水化合物代谢相关的酶,从而分解酯键释放SCFA[48]。例如,乙酰化、丙酰化或丁酰化淀粉经结肠菌群裂解和微生物代谢两种途径提高大鼠肠道SCFA 的水平[49]。此外,酰化修饰能够改善多糖/低聚糖理化和功能特性,如增强其抗氧化性、抗菌性、溶解性和热稳定性[50]。针对因黏液层损伤而带正电荷的炎症部位,设计带负电的胶束可以在回肠和盲肠中释放SCFA,并且具有在病变部位靶向性富集的特点,从而更有效缓解IBD[42]。
以膳食纤维为载体递送SCFA 至结肠,可为肠道菌群提供碳源,选择性地促进肠道内有益菌的生长并抑制有害菌的定殖,重塑菌群结构,调节代谢物水平,并与递送的SCFA 在体内共同发挥作用,膳食纤维递送SCFA 体系缓解IBD 的途径如图2 所示。
图2 膳食纤维递送SCFA 体系缓解IBD 的途径
Fig.2 The pathway of dietary fiber delivery SCFA to alleviate IBD
递送SCFA 到达结肠的膳食纤维能够增加肠道菌群多样性和有益菌丰度,从而缓解IBD。研究表明抗炎双歧杆菌菌株可预防葡聚糖硫酸钠(dextran sulfate sodium salt,DSS)诱导的小鼠结肠炎和相关的肠道菌群失调[39]。采用膳食纤维作为递送SCFA 的载体一方面能够增加肠道菌群的多样性,有效提高结肠有益菌(双歧杆菌和乳酸杆菌)的丰度,另一方面能够抑制致病性梭杆菌属(Fusobacterium)、埃希氏-志贺氏菌属(Escherichia_Shigella)和脱硫弧菌(Desulfovibrio)的生长,恢复肠道菌群稳态[39,47,51]。递送的SCFA 种类不同,其对肠道菌群产生的影响也不尽相同。例如,采用抗性淀粉递送丙酸盐可提高双歧杆菌的丰度,而递送乙酸和丁酸时更有利于粪球菌属(Coprococcus)、丁酸单胞菌属(Butyricimonas)及经黏液真杆菌属(Blautia)的生长[46]。此外,膳食纤维靶向递送SCFA 体系还提高了产丁酸盐细菌的丰度,如梭状芽胞杆菌属XIVa、瘤胃球菌(Ruminococcus)及罗氏菌属(Roseburia)等[42,47]。
膳食纤维在胃中的高稳定性以及在结肠黏膜的高黏附性[52],赋予其优异的靶向结肠递送SCFA 的能力。乙酸盐是肠道菌群必需的营养物质,对于维持肠道菌群平衡具有重要作用;丙酸盐可促进上皮细胞增殖和迁移,保持肠道上皮细胞的稳态[6];丁酸盐可为肠道上皮细胞提供能量,促进上皮细胞的生长并维持上皮细胞功能的完整性[16]。以淀粉[53]、果糖[39]、环糊精[45]等构建递送体系能够抵抗胃肠道的消化并在结肠部位释放SCFA,从而发挥缓解肠道炎症的作用。除了外源补充SCFA,用于递送SCFA 的膳食纤维还可以促进内源性SCFA 的产生。例如,低聚果糖在被肠道菌群降解的同时产生乳酸盐和丁酸盐[54];抗性淀粉可促进肠道菌群代谢生成乙酸盐、丙酸盐及丁酸盐等[55]。肠道内的乙酸盐和乳酸盐可以进一步被其他微生物利用并生成丙酸盐和丁酸盐[56-57],以此调节肠道内SCFA 之间的平衡。因此,膳食纤维基递送体系具有靶向递送和促进SCFA 生成的双重作用,进而提高肠道内SCFA 的水平。
膳食纤维靶向结肠递送的SCFA 可通过增强肠上皮屏障功能、调节细胞因子的表达和释放等来改善肠道炎症。研究表明,肠道内的SCFA 通过调节T 细胞、巨噬细胞和树突状细胞的分化或功能,抑制促炎因子的产生,包括抑制核因子-κB(nuclear factor kappa-B,NF-κB)、IL-1β、IFN-γ 及TNF-α,提高抗炎细胞因子[白细胞介素-4(interleukin-4,IL-4)、白细胞介素-10(interleukin-10,IL-10)、转化生长因子-β(transforming growth factor-β,TGF-β)的水平[41,53],并减轻结肠固有层和黏膜下层中性粒细胞、巨噬细胞、淋巴细胞的浸润情况来缓解IBD 的症状[58-59]。此外,膳食纤维也可直接起到改善肠道屏障和肠道免疫的作用。菊粉可促进抗菌肽的分泌、防御素和紧密连接蛋白的基因表达,改善肠道通透性,从而缓解因西方化饮食诱导的肠道屏障功能障碍[60]。由于结肠病变部位黏膜呈正电性,带负电的膳食纤维可在该部位富集并穿过黏膜到达上皮层,刺激杯状细胞分泌黏液,进而改善肠黏膜屏障作用[61]。氧化应激的加重被认为是IBD 病理生理学的基本机制之一[62],膳食纤维靶向递送SCFA 能够抑制与氧化应激有关的髓过氧化物酶和诱导型一氧化氮合酶的表达[53]。以上结果表明,膳食纤维靶向递送SCFA 可为改善肠道屏障、调控免疫细胞功能及其细胞因子的释放提供一条新型途径。
抗性淀粉(resistant starch,RS)是指不能被人体消化酶分解,可被肠道菌群利用的一类淀粉[63]。RS 具有高度的生物相容性和益生元作用,可被肠道菌群分解代谢从而提高肠道内SCFA 的水平(尤其是乙酸盐和丁酸盐)、降低肠道pH 值以及提高有益菌群的丰度[64]。RS 不仅可以作为膳食纤维调节肠道内环境的稳态,还可以用于构建载体将活性物质递送到结肠,从而发挥缓解肠道炎症的作用[65]。如补充丙酰化淀粉能够显著提高小鼠肠道丙酸的水平,降低炎症因子IL-1β、IL-6 和TNF-α 的水平[34,56];摄入丁酰化淀粉可在提高小鼠肠道丁酸盐水平的同时显著促进结肠炎小鼠的杯状细胞和黏液蛋白的产生,改善肠道屏障作用,增加抗炎细胞因子IL-10 的水平,且对DSS 诱导的小鼠结肠炎具有多重抑制作用[37]。因此,针对结肠SCFA水平的变化,摄入特定酰化形式的淀粉,是恢复肠道SCFA 水平的有效途径。
低聚果糖是由β(2→1)果糖基-果糖糖苷键连接构成的一种不易消化的低聚糖,末端为葡萄糖单残基,可从植物中提取或通过酶促反应合成[66]。作为广泛使用的益生元之一,低聚果糖能够促进双歧杆菌和乳酸杆菌等有益细菌的生长,调节肠道SCFA 水平、改善机体免疫反应,从而预防结肠癌的产生以及防止肥胖相关疾病的发生[67]。作为水溶性膳食纤维,低聚果糖与其他活性物质偶联(如阿魏酸)可自组装成圆形微粒,抵抗胃肠道酶的消化并将活性物质递送到结肠[68]。丁酰化的低聚果糖已表现出改善DSS 诱导的小鼠结肠炎,包括显著提高肠道SCFA 的水平,特别是丁酸盐的浓度;降低结肠组织中TNF-α、IFN-γ 和IL-8 的含量[31]。乙酰化的低聚果糖具有良好的促进肠道有益细菌(如双歧杆菌和乳酸杆菌)生长的能力和抗氧化性,在缓解IBD 方面表现出较大的潜力[32]。
环糊精(cyclodextrin,CD)是D-葡萄糖单元通过α-1,4-葡萄糖苷键连接的环状低聚糖,表面亲水而内部疏水,根据葡萄糖单位的数量可分为α-、β-、γ-CD[69]。环糊精除了具有自组装、易功能化、价格低廉等优点,还能够抵抗胃肠道(胃和小肠)消化吸收,并在结肠和大肠中被微生物降解[70]。环糊精基的微胶囊已被用于丁酸盐的递送,并在仔猪的回肠和升结肠部位能有效释放出丁酸盐[38,50]。此外,CD 与SCFA 偶联物也具有靶向结肠的递送能力。例如,正丁酰-CD 偶联物在大鼠的盲肠和结肠部位被肠道菌群分解并释放丁酸盐[71]。因此,根据CD 结构特性灵活设计SCFA 的靶向递送体系,可以更好地发挥其缓解IBD 的作用。
其他表现出靶向结肠递送SCFA 的膳食纤维包括木聚糖、菊粉、果胶等。木聚糖是农业作物中最常见的半纤维素,可以在胃和小肠中保持完整并直达结肠[72]。负载丁酸盐的木聚糖能够显著提高结肠炎小鼠肠道中丁酸盐含量,上调G 蛋白偶联受体109a 蛋白的表达和抑制组蛋白去乙酰化酶的活性,并通过激活自噬途径和NF-κB 的表达发挥抗炎的作用[43]。菊粉作为一种天然的果聚糖多糖,其果糖单元上的3 个羟基可为SCFA 提供结合位点,并可将SCFA 递送到结肠远端,发挥增强肠道健康的功能[57,73]。近年来,基于肠道pH值和电性特征设计的不同电性的凝胶已被证实可在肠道的不同区域释放SCFA,提高肠道有益菌的相对丰度,并恢复结肠炎小鼠的肠黏膜屏障作用,改善肠道炎症[35]。除了上述的膳食纤维,壳聚糖及其低聚糖、海藻酸盐等也具有靶向结肠递送SCFA 的潜力[36]。
低膳食纤维饮食不仅影响肠道菌群结构,而且还会改变肠道SCFA 水平,并由此引发肠道炎症反应,参与IBD 的产生和发展。采用膳食纤维构建载体递送SCFA 时,可有效抵抗胃肠道的消化,靶向地将SCFA运输至结肠部位,进而通过补充外源性SCFA 和促进内源性SCFA 的产生、改善肠道屏障功能、重塑肠道菌群及肠道免疫稳态等途径缓解IBD。然而,现阶段基于膳食纤维的SCFA 递送系统在缓解IBD 方面仍存在一定的不足。如作为递送载体的膳食纤维在食品中稳定性较差;SCFA 的刺激性气味会对感官特性造成不良影响;膳食纤维结构复杂多样导致递送效率参差不齐等。在未来的研究中,针对IBD 患者内环境特征,设计具有刺激响应特性的新型膳食纤维靶向结肠递送SCFA 体系可能成为快速缓解IBD 的一个高潜力途径。特别是与其他天然聚合物(如蛋白质)组合,构建具有更高的生物安全性和更精确时空靶向性能的结肠靶向递送体系,有望成为干预IBD 发生和发展的全新策略。此外,探索SCFA 对膳食纤维理化特性(如溶解性、抗氧化性、抗消化特性)及微生物分解机制的影响,优化体系整体的递送效率和改善其增进人体健康的效果,可为开发新型多功能膳食纤维食品提供借鉴与参考。
[1] 杨小冰,金明玉,吴小禾,等.膳食营养素与炎症性肠病关系研究进展[J].食品科学,2019,40(9):309-315.YANG Xiaobing,JIN Mingyu,WU Xiaohe,et al.Progress in understanding the relationship between dietary nutrients and inflammatory bowel disease[J].Food Science,2019,40(9):309-315.
[2] HOU J K,ABRAHAM B,EL-SERAG H.Dietary intake and risk of developing inflammatory bowel disease: A systematic review of the literature[J].The American Journal of Gastroenterology, 2011, 106(4):563-573.
[3] FAIRBRASS K M, COSTANTINO S J, GRACIE D J, et al.Prevalence of irritable bowel syndrome-type symptoms in patients with inflammatory bowel disease in remission: A systematic review and meta-analysis[J].The Lancet Gastroenterology&Hepatology,2020,5(12):1053-1062.
[4] LEE Y,SUGIHARA K,GILLILLAND M G,et al.Hyaluronic acidbilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier,microbiome and immune responses in colitis[J].Nature Materials,2020,19(1):118-126.
[5] MUSSATTO S I, MANCILHA I M.Non-digestible oligosaccharides:A review[J].Carbohydrate Polymers,2007,68(3):587-597.
[6] YAO Y, CAI X Y, FEI W D, et al.The role of short-chain fatty acids in immunity, inflammation and metabolism[J].Critical Reviews in Food Science and Nutrition,2022,62(1):1-12.
[7] LEWIS J D,ABREU M T.Diet as a trigger or therapy for inflammatory bowel diseases[J].Gastroenterology,2017,152(2):398-414.
[8] SHEEHAN D, MORAN C, SHANAHAN F.The microbiota in inflammatory bowel disease[J].Journal of Gastroenterology, 2015, 50(5):495-507.
[9] HOU K J,WU Z X,CHEN X Y,et al.Microbiota in health and diseases[J].Signal Transduction and Targeted Therapy, 2022, 7(1):135.
[10] YANG X C, ZENG D Y, LI C Y, et al.Therapeutic potential and mechanism of functional oligosaccharides in inflammatory bowel disease: A review[J].Food Science and Human Wellness, 2023, 12(6):2135-2150.
[11] FRANK D N, ST AMAND A L, FELDMAN R A, et al.Molecularphylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases[J].Proceedings of the National Academy of Sciences of the United States of America, 2007,104(34):13780-13785.
[12] ZENG W,HE D,XING Y F,et al.Internal connections between dietary intake and gut microbiota homeostasis in disease progression of ulcerative colitis: A review[J].Food Science and Human Wellness,2021,10(2):119-130.
[13] LEVINE A, SIGALL BONEH R, WINE E.Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases[J].Gut,2018,67(9):1726-1738.
[14] KHAN S,WALIULLAH S,GODFREY V,et al.Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice[J].Science Translational Medicine,2020,12(567):eaay6218.
[15] KOSTOVCIKOVA K, COUFAL S, GALANOVA N, et al.Diet rich in animal protein promotes pro-inflammatory macrophage response and exacerbates colitis in mice[J].Frontiers in Immunology, 2019,10:919.
[16] REKHA K, VENKIDASAMY B, SAMYNATHAN R, et al.Shortchain fatty acid: An updated review on signaling, metabolism, and therapeutic effects[J].Critical Reviews in Food Science and Nutrition,2024,64(9):2461-2489.
[17] YANG W J, YU T M, HUANG X S, et al.Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity[J].Nature Communications, 2020, 11(1):4457.
[18] PARADA VENEGAS D, DE LA FUENTE M K, LANDSKRON G,et al.Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J].Frontiers in Immunology,2019,10:277.
[19] KESHTELI A H, MADSEN K L, DIELEMAN L A.Diet in the pathogenesis and management of ulcerative colitis:A review of randomized controlled dietary interventions[J].Nutrients, 2019, 11(7):1498.
[20] MIRANDA P M,DE PALMA G,SERKIS V,et al.High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production[J].Microbiome,2018,6(1):57.
[21] XU H M, ZHAO H L, GUO G J, et al.Characterization of shortchain fatty acids in patients with ulcerative colitis:A meta-analysis[J].BMC Gastroenterology,2022,22(1):117.
[22] MARTINI E, KRUG S M, SIEGMUND B, et al.Mend your fences:The epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease[J].Cellular and Molecular Gastroenterology and Hepatology,2017,4(1):33-46.
[23] ODENWALD M A, TURNER J R.The intestinal epithelial barrier:A therapeutic target?[J].Nature Reviews Gastroenterology & Hepatology,2017,14(1):9-21.
[24] CAMILLERI M.Leaky gut:Mechanisms,measurement and clinical implications in humans[J].Gut,2019,68(8):1516-1526.
[25] MEHANDRU S,COLOMBEL J F.The intestinal barrier,an arbitrator turned provocateur in IBD[J].Nature Reviews Gastroenterology&Hepatology,2021,18(2):83-84.
[26] FAKHOURY H M A, KVIETYS P R, ALKATTAN W, et al.Vitamin D and intestinal homeostasis: Barrier, microbiota, and immune modulation[J].The Journal of Steroid Biochemistry and Molecular Biology,2020,200:105663.
[27] ROHR M W, NARASIMHULU C A, RUDESKI-ROHR T A, et al.Negative effects of a high-fat diet on intestinal permeability: A review[J].Advances in Nutrition,2020,11(1):77-91.
[28] HUSSAIN M, IJAZ M U, AHMAD M I, et al.Meat proteins in a high - fat diet have a substantial impact on intestinal barriers through mucus layer and tight junction protein suppression in C57BL/6J mice[J].Food&Function,2019,10(10):6903-6914.
[29] LAFFIN M, FEDORAK R, ZALASKY A, et al.A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice[J].Scientific Reports, 2019, 9(1):12294.
[30] CHEN L L,WANG J Y,YI J,et al.Increased mucin-degrading bacteria by high protein diet leads to thinner mucus layer and aggravates experimental colitis[J].Journal of Gastroenterology and Hepatology,2021,36(10):2864-2874.
[31] KOTLA N G, RANA S, SIVARAMAN G, et al.Bioresponsive drug delivery systems in intestinal inflammation:State-of-the-art and future perspectives[J].Advanced Drug Delivery Reviews, 2019, 146:248-266.
[32] SHI X Q, MONACO M H, DONOVAN S M, et al.Encapsulation of tributyrin by gamma-cyclodextrin: Complexation, spray drying, and in vitro fermentation[J].Journal of Food Science, 2020, 85(10):2986-2993.
[33] FENG Y, GU J Y, ZHU T, et al.Enzymatic cyclodextrin synthesistributyrin inclusion complex: Properties, structural characterization and release behaviors in vitro[J].LWT-Food Science and Technology,2022,165:113726.
[34] MA Y S, PENG S J, TANG N, et al.Encapsulation of butyrate using low-alkali konjac gel induced by ethanol for colonic delivery[J].Food Hydrocolloids for Health,2021,1:100046.
[35] YAN L,WANG L,GAO S J,et al.Celery cellulose hydrogel as carriers for controlled release of short-chain fatty acid by ultrasound[J].Food Chemistry,2020,309:125717.
[36] DU LE H, LOVEDAY S M, NOWAK E, et al.Pectin emulsions for colon-targeted release of propionic acid[J].Food Hydrocolloids,2020,103:105623.
[37] DU LE H,LOVEDAY S M,SINGH H,et al.Gastrointestinal digestion of Pickering emulsions stabilised by hydrophobically modified cellulose nanocrystals: Release of short-chain fatty acids[J].Food Chemistry,2020,320:126650.
[38] XIE Z Q,WANG S K,WANG Z G,et al.In vitro fecal fermentation of propionylated high-amylose maize starch and its impact on gut microbiota[J].Carbohydrate Polymers,2019,223:115069.
[39] KANG S N, YOU H J, JU Y, et al.Butyl-fructooligosaccharides modulate gut microbiota in healthy mice and ameliorate ulcerative colitis in a DSS-induced model[J].Food & Function, 2022, 13(4):1834-1845.
[40] HARTZELL A L, MALDONADO-GÓMEZ M X, HUTKINS R W,et al.Synthesis and in vitro digestion and fermentation of acylated inulin[J].Bioactive Carbohydrates and Dietary Fibre,2013,1(1):81-88.
[41] ZHA Z Q,LV Y,TANG H L,et al.An orally administered butyratereleasing xylan derivative reduces inflammation in dextran sulphate sodium-induced murine colitis[J].International Journal of Biological Macromolecules,2020,156:1217-1233.
[42] WANG R Y, CAO S J, BASHIR M E H, et al.Treatment of peanut allergy and colitis in mice via the intestinal release of butyrate from polymeric micelles[J].Nature Biomedical Engineering, 2023, 7(1):38-55.
[43] CHENG J G, LI B P, MA P P, et al.Synthesis and properties of macrocyclic butanoic acid conjugates as a promising delivery formulation for the nutrition of colon[J].The Scientific World Journal,2013,2013:914234.
[44] YAMANAKA Y, KOBAYASHI I, NEVES M A, et al.Formulation of W/O/W emulsions loaded with short-chain fatty acid and their stability improvement by layer-by-layer deposition using dietary fibers[J].LWT-Food Science and Technology,2017,76:344-350.
[45] DONOVAN J D,BAUER L,FAHEY G C Jr,et al.In vitro digestion and fermentation of microencapsulated tributyrin for the delivery of butyrate[J].Journal of Food Science,2017,82(6):1491-1499.
[46] LI M,WANG F F,WANG J,et al.Starch acylation of different short-chain fatty acids and its corresponding influence on gut microbiome and diabetic indexes[J].Food Chemistry,2022,389:133089.
[47] ZHOU S X,ZHU W,QIN X J,et al.Synthesis and evaluation of antioxidant and potential prebiotic activities of acetylated and butyrylated fructo-oligosaccharides[J].Antioxidants,2022,11(9):1658.
[48] WANG L L, HU L J, YAN S, et al.Effects of different oligosaccharides at various dosages on the composition of gut microbiota and short-chain fatty acids in mice with constipation[J].Food & Function,2017,8(5):1966-1978.
[49] ANNISON G, ILLMAN R J, TOPPING D L.Acetylated, propionylated or butyrylated starches raise large bowel short-chain fatty acids preferentially when fed to rats[J].The Journal of Nutrition,2003,133(11):3523-3528.
[50] LI B, HAN L Y, MA J L, et al.Synthesis of acylated derivatives of chitosan oligosaccharide and evaluation of their potential antifungal agents on Fusarium oxysporum[J].Carbohydrate Polymers,2023,314:120955.
[51] TAN D M, CHEN W W, YANG Z X, et al.Enzymatic synthesis of propionyl-fructooligosaccharides and their evaluation as a gut microbiota modulator[J].Food Hydrocolloids,2023,142:108782.
[52] TANG H Y, FANG Z X, NG K.Dietary fiber-based colon-targeted delivery systems for polyphenols[J].Trends in Food Science &Technology,2020,100:333-348.
[53] LI L J, CHENG L, LI Z F, et al.Butyrylated starch protects mice from DSS-induced colitis: Combined effects of butyrate release and prebiotic supply[J].Food&Function,2021,12(22):11290-11302.
[54] LIU N, WANG H Y, YANG Z Z, et al.The role of functional oligosaccharides as prebiotics in ulcerative colitis[J].Food & Function,2022,13(13):6875-6893.
[55] LI M, WANG F F, WANG J, et al.Manipulation of the internal structure of starch by propionyl treatment and its diverse influence on digestion and in vitro fermentation characteristics[J].Carbohydrate Polymers,2021,270:118390.
[56] HOSSEINI E, GROOTAERT C, VERSTRAETE W, et al.Propionate as a health-promoting microbial metabolite in the human gut[J].Nutrition Reviews,2011,69(5):245-258.
[57] RIVIÈRE A, SELAK M, LANTIN D, et al.Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut[J].Frontiers in Microbiology,2016,7:979.
[58] YANG W Q,REN D Y,ZHAO Y,et al.Fuzhuan brick tea polysaccharide improved ulcerative colitis in association with gut microbiota-derived tryptophan metabolism[J].Journal of Agricultural and Food Chemistry,2021,69(30):8448-8459.
[59] XU Z Z, LIU W, ZHANG Y H, et al.Therapeutic and prebiotic effects of five different native starches on dextran sulfate sodium-induced mice model of colonic colitis[J].Molecular Nutrition & Food Research,2021,65(8):e2000922.
[60] BEISNER J,FILIPE ROSA L,KADEN-VOLYNETS V,et al.Prebiotic inulin and sodium butyrate attenuate obesity-induced intestinal barrier dysfunction by induction of antimicrobial peptides[J].Frontiers in Immunology,2021,12:678360.
[61] LIU L S, FISHMAN M L, HICKS K B, et al.Interaction of various pectin formulations with porcine colonic tissues[J].Biomaterials,2005,26(29):5907-5916.
[62] MUELLER M, HOBIGER S, JUNGBAUER A.Anti-inflammatory activity of extracts from fruits,herbs and spices[J].Food Chemistry,2010,122(4):987-996.
[63] LIU H C,ZHANG M,MA Q Y,et al.Health beneficial effects of resistant starch on diabetes and obesity via regulation of gut microbiota:A review[J].Food&Function,2020,11(7):5749-5767.
[64] BOJARCZUK A, SKĄPSKA S, MOUSAVI KHANEGHAH A, et al.Health benefits of resistant starch: A review of the literature[J].Journal of Functional Foods,2022,93:105094.
[65] SONG Y Y,QU X Y,GUO M,et al.Indole acetylated high-amylose maize starch:Synthesis,characterization and application for amelioration of colitis[J].Carbohydrate Polymers,2023,302:120425.
[66] CHEN G, LI C, CHEN K.Fructooligosaccharides[M]//Studies in Natural Products Chemistry.Amsterdam:Elsevier,2016:209-229.
[67] COSTA G T,VASCONCELOS Q D J S,ARAGÃO G F.Fructooligosaccharides on inflammation, immunomodulation, oxidative stress,and gut immune response: A systematic review[J].Nutrition Reviews,2022,80(4):709-722.
[68] JOHNSON E M, LEE H, JAYABALAN R, et al.Ferulic acid grafted self-assembled fructo-oligosaccharide micro particle for targeted delivery to colon[J].Carbohydrate Polymers, 2020, 247:116550.
[69] TIAN B R,LIU Y M,LIU J Y.Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review[J].Carbohydrate Polymers,2021,251:116871.
[70] LIU Z J,YE L,XI J N,et al.Cyclodextrin polymers:Structure,synthesis, and use as drug carriers[J].Progress in Polymer Science,2021,118:101408.
[71] HIRAYAMA F,OGATA T,YANO H,et al.Release characteristics of a short-chain fatty acid, n-butyric acid, from its β-cyclodextrin ester conjugate in rat biological media[J].Journal of Pharmaceutical Sciences,2000,89(11):1486-1495.
[72] EBRINGEROVÁ A, HEINZE T.Xylan and xylan derivatives-biopolymers with valuable properties, 1.Naturally occurring xylans structures, isolation procedures and properties[J].Macromolecular Rapid Communications,2000,21(9):542-556.
[73] ZHU X Z, ZHANG X, GAO X L, et al.Synthesis and characterization of inulin butyrate ester, and evaluation of its antioxidant activity and in vitro effect on SCFA production[J].Starch-Stärke, 2020,72(11/12):1900323.
Research Progress on Dietary Fiber-based Colon-targeted Delivery Systems for Short-chain Fatty Acids to Alleviate Inflammatory Bowel Disease
廖培龙,韩军花,陈剑,等.膳食纤维基靶向结肠递送短链脂肪酸体系缓解炎症性肠病的研究进展[J].食品研究与开发,2024,45(12):210-217.
LIAO Peilong,HAN Junhua,CHEN Jian,et al.Research Progress on Dietary Fiber-based Colon-targeted Delivery Systems for Short-chain Fatty Acids to Alleviate Inflammatory Bowel Disease[J].Food Research and Development,2024,45(12):210-217.