植物精油的提取及其生理活性研究进展

张艳东1,张艳俊2,李腾飞1*

(1.河北工程大学生命科学与食品工程学院,河北邯郸 056038;2.河北科技工程职业技术大学资源与环境工程系,河北邢台 054000)

摘 要:植物精油是一种特殊的植物提取物,因其具有强烈的芳香气味和多种生理活性而备受青睐。目前关于植物精油的研究多集中在提取工艺、成分分析、生理活性及作用机理等方面。为便于对植物精油的研究进展有较为全面的认识,该文主要从植物精油的提取工艺、成分分析方法和生理活性研究3个方面进行介绍,以期对植物精油的研究和应用提供理论支持。

关键词:植物精油;萜烯;提取;成分分析;生理活性

植物精油是芳香植物的次级代谢产物,是植物通过次生代谢途径合成的作为通讯和防御的挥发性成分。据统计,可以合成精油的芳香植物广泛分布在60多种植物科中,包括菊科、兰科、姜科、唇形科、伞形科、桃金娘科、禾本科和芸香科等[1-3]。据文献记载,已经发现的植物精油有3 000余种,其中300多种已经被商品化[4]。植物精油因其良好的抗菌、抗病毒、抗氧化以及神经调节等功效在食品、化妆品以及芳香疗法等领域广泛应用[5-7]。本文将对植物精油的化学成分、提取和分析方法以及生理活性进行详细介绍,便于对植物精油进一步了解,促进植物精油的开发和有效利用。

1 精油的组成成分

植物精油是一种天然小分子混合物,其主要成分可归纳为4大类:萜烯类化合物、芳香族化合物、脂肪族化合物及少量含氮/硫化合物,其中以萜烯类化合物为主要成分的植物精油占大多数。萜烯类化合物是由甲戊二羟酸衍生而来,是以(C5H8n为分子式的链状或环状烯烃类衍生物。萜烯类化合物的分类通常是根据异戊二烯单位的个数,含有2个异戊二烯单位的萜烯类化合物被归为单萜,含3个异戊二烯单位被归为倍半萜,依次为二萜、二倍半萜、三萜、四萜和多聚萜等,其中单萜和倍半萜类化合物比较常见,多萜类化合物在自然界中比较少见。常见的萜烯类化合物如图1所示,萜烯类化合物除了以常见的萜烯结构形式存在外,还以醇、醛、酮、羧酸、酯等多种形式存在。

图1 常见的萜烯类化合物
Fig.1 The common terpenes

植物精油中的萜烯类化合物多为单萜和倍半萜类,二萜及以上化合物因不具有挥发性在植物精油中几乎不存在。研究表明,植物中的萜烯类化合物主要以异戊烯基焦磷酸(isopentenyl pyrophosphate,IPP)和3,3-二甲基丙烯基焦磷酸(dimethylallyl pyrophosphate,DMAPP)为底物,经甲羟戊酸(mevalproic acid,MVA)代谢途径和2-C-甲基-D-赤藻糖醇-4-磷酸(2-C-methyl-D-erythritol-4-phosphate,MEP)代谢途径合成,如图 2所示。MVA途径发生在植物的细胞质中,最终合成倍半萜和三萜等次生代谢产物;MEP途径发生在植物细胞的质体中,最终合成小分子单萜和二萜类化合物。

图2 植物细胞中萜类化合物合成途径
Fig.2 Synthesis pathways of terpenoids in plant cells

2 精油的提取方法

植物精油存在于芳香植物的花、叶、根、茎、皮、全草或果实当中,需要一定的技术手段从植物的油腺组织中提取出来。从植物组织中提取精油的方法众多,其中最常见的传统提取方法包括压榨法、溶剂萃取法、水蒸气蒸馏法等。近年来新兴的提取技术包括超临界流体萃取、亚临界水萃取以及超声波辅助萃取和微波辅助萃取等。与传统提取技术相比,新型提取技术不仅很大程度上缩短了提取时间,提高了精油的产率,而且也更加的安全环保,更适合于大规模工厂化生产,但是对提取设备的要求也大大提高,需要较高的成本投入,同时也存在其他方面的缺点。

2.1 水蒸气蒸馏法

欧洲药典中认为仅通过蒸馏过程从芳香植物中获得的挥发性油才能称为精油[9],因此水蒸气蒸馏法一直是提取植物精油最常用的传统方法。根据物料与水的接触方式可以分为水上蒸馏、水中蒸馏以及直接蒸汽蒸馏。水蒸气蒸馏法的基本原理是水分子与含有挥发性成分的物料接触并渗透进植物组织中置换出油腺组织中的精油,从而使其随着热蒸汽一起蒸出,经冷凝分离后便可以得到含挥发性成分的精油。水蒸气蒸馏法提取精油成本低、产量大,蒸馏过程中不需要有机溶剂的参与,可以直接获得天然、纯净的精油,且环保无污染,因此水蒸气蒸馏法是目前提取植物精油最常用的方法。但是对于热敏性高、易溶于水的成分并不适用。除此之外,水蒸气蒸馏法获得的精油多为挥发性成分,对于非挥发性成分的提取效率较低。

2.2 溶剂萃取法

溶剂萃取法是获取植物精油提取物最常用的传统提取方法[10]。植物组织中不同的化合物在极性不同的溶剂中溶解性存在较大差异,因此可以选择对目标化合物溶解度大而对其他化合物溶解度小的溶剂将其从植物组织中提取出来。常用于提取精油的有机溶剂包括石油醚、乙醇、丙酮及氯仿等沸点较低的溶剂,容易挥发除去,得到质量较好的精油。但是由于植物组织中的脂质、蜡质等也容易被提取出来,很难与精油分离,并且该方法制得的精油存在溶剂残留问题,气味和安全性不如水蒸气蒸馏法获得的精油,因此在植物精油提取过程中应用较少。

2.3 超临界流体萃取法

超临界流体萃取技术是新兴提取技术的代表,近年来发展迅速。该技术的特点是在超临界状态下,通过改变压力和温度来调节超临界流体的溶解能力,根据相似相溶原理将植物组织中不同的化合物依次扩散到溶剂中,最终通过减压、升温等手段将超临界流体变成普通气体释放最终得到萃取物[11]。CO2因为具有较低的临界温度和临界压力、无毒、不具有易燃易爆等危险性、价格较低等特点而成为较理想的超临界流体,在天然产物提取分离领域方面应用广泛[12-13]。如Soh等[14]利用超临界CO2萃取技术提取广藿香精油,确定压力15 MPa、温度45℃、CO2流速60 g/min可以获得广藿香醇含量最高且抗氧化活性较好的精油,该提取方法比传统水蒸气蒸馏法更高效地利用了植物原料,避免了原料的浪费。

由于水不溶于CO2,因此使用超临界CO2萃取需要对物料进行干燥处理,不但造成芳香成分的损失还提高了成本。并且CO2为非极性小分子化合物,对于某些极性大的化合物溶解度大、选择性差,需要使用夹带剂提高其提取率,而除去挥发油中的夹带剂不但操作复杂还会造成芳香化合物的损失。此外,超临界CO2萃取与传统溶剂提取存在相似的缺点,会将植物组织中极性较低的脂质、蜡质以及色素等萃取出来,后期难分离,不利于获取纯净的精油[15]。因此,在选择提取方法时要充分考虑植物原料和提取化合物的特性来选择最适工艺。

2.4 亚临界水萃取法

亚临界水萃取技术是在超临界流体萃取的基础上发展起来的,与超临界流体萃取技术具有相似的原理,通过对压力和温度的调节来改变水的极性进而萃取出不同极性的化合物。由于水是公认的无毒、无污染原料,因此亚临界水萃取被认为是绿色安全、具有应用潜力的技术[16]。亚临界水萃取技术改善了超临界CO2萃取技术中夹带剂的问题,同时也省去了原料的干燥程序,简化了操作的同时节约成本,并且减少了CO2气体的排放,有利于保护环境。与传统水蒸气蒸馏法相比,亚临界水萃取法能够缩短提取时间,并且节约原料,同时对精油的产量和质量也有所改善。Samadi等[17]同时采用传统水蒸气蒸馏法和亚临界水萃取法提取沉香木中的精油并对其产量和质量进行比较分析,发现亚临界水萃取法在提高精油产量的同时增加了倍半萜和含氧化合物的含量,如愈创木酚、糠醛等药用价值较高的化合物,这预示着沉香精油的质量得到提高,并且亚临界水萃取沉香木精油的时间只有17 min,而水蒸气蒸馏法可长达16 h。亚临界水萃取法能够在较短时间内完成较为彻底的萃取,该结果与高温高压条件下水的极性、介电常数、表面张力等下降进而导致物料扩散性能增强密切相关。但是由于亚临界水的温度过高(通常高于200℃),亚临界水萃取法不适用热敏性成分的提取,同时对设备的要求也较高。

2.5 超声波/微波辅助提取法

超声波辅助提取和微波辅助提取技术是新兴的辅助提取手段[18]。超声波是弹性机械波,通过超声空化效应使溶剂快速渗透到植物细胞中,同时机械振动作用促进植物组织中的成分溶解于溶剂中,因而加速完成提取过程。微波辅助提取是通过高频电磁波直接穿透介质直达植物组织内部,将微波能快速转化为热能,植物细胞中的水分迅速气化并不断给细胞壁加压,细胞壁破裂后植物组织中的化合物被快速释放到溶剂中,快速完成萃取过程[19]。超声波辅助提取和微波辅助提取不仅缩短了提取时间,对于溶剂的用量也大大减少,在精油得率方面也有所提高。Zorga等[20]利用超声波辅助水蒸气蒸馏法提取芹菜籽精油并将其成分与传统水蒸气蒸馏法所得精油比较分析,结果显示该方法在提高精油产率、缩短提取时间的同时,对精油的组成改变较小,二者所得精油成分相似度高达97.8%,不具有明显差异。Fiorini等[21]研究了微波辅助水蒸气蒸馏法与传统水蒸气蒸馏法在大麻精油产量与成分方面的差异,结果显示二者在精油得率方面差异较小(得率分别为0.15%和0.14%),但是微波辅助提取法获得的大麻精油主要成分大麻二酚(cannabidiol,CBD)和(E)-石竹烯等的含量更高[微波辅助提取法获得大麻精油中的CBD含量为9.3%,而传统水蒸气蒸馏法CBD含量为5.6%,(E)-石竹烯含量分别为46.5%和36.1%],并且提取时间从240 min缩短至115 min,在节约时间成本的同时也减少了水资源的浪费。但是微波辅助提取很可能因为过度加热而导致热敏性化合物降解失活,因此不适用于热敏性化合物的提取。对于热敏性成分的提取可以适当使用超声波辅助提取法,在缩短提取时间的同时可以减少溶剂的使用。

3 精油成分分析方法

由于精油的成分复杂,因此原料产地、收获时间、提取工艺等条件对精油的成分组成具有很大的影响[22]。分析鉴定精油成分对于控制精油品质、研究精油生理活性等具有重要意义[23]。目前,用于精油成分分析的方法包括薄层层析(thin layer chromatography,TLC)、气相色谱(gas chromatography,GC)、高效液相色谱(high performance liquid chromatography,HPLC)、气相色谱-质谱联用(gas chromatography-mass spectrum,GC-MS)和超临界流体色谱(supercritical fluid chromatography,SFC)等。其中,GC-MS因其方便、快捷、准确的特点在精油等挥发性成分分析领域应用最为广泛[24-25]

GC-MS是将气相色谱分析与质谱分析技术相结合,混合物样品注入色谱仪后在色谱柱上分离,分离后的组分经分子分离器除去载气后进入离子源,电离后的分子离子和碎片离子被加速并射向质量分析器,从而达到根据样品离子的质量和强度进行定性定量和结构分析的目的。单独使用气相色谱无法分离保留时间一致的化合物而质谱只能分离组成较纯的化合物,二者单独使用均无法精确地识别精油中复杂的化合物,而GC-MS很好地解决了二者的缺陷,可以相对准确地确定精油中的物质组成和相对含量,大大提高了植物精油成分鉴定的速度与精确度[26]

4 植物精油生理活性研究

4.1 抗氧化活性研究

氧化反应在生活中普遍存在,包括食品氧化变质、金属腐蚀、燃烧以及生物体的呼吸等。氧化反应是生物体需氧活动和新陈代谢的基础,但是氧化反应会产生过量的自由基,导致机体内与有氧代谢相关的生理反应失衡,进而破坏细胞的大分子结构,如DNA、蛋白质和脂质[27]。因此,由自由基过剩引起的氧化应激反应与细胞衰老以及多种慢性疾病息息相关,如癌症[28]、糖尿病[29]、神经退行性疾病[30]、心血管疾病和炎症[31]等。为了改善物质的氧化变质以及机体的氧化损伤,抗氧化剂得到了越来越多地关注。

植物作为食物和药物使用已经有几千年的历史,现代研究也证明多种植物提取物具有良好的抗氧化活性,如多酚类物质,存在于多种植物中,能够很好地清除体内的自由基,激活机体内源性抗氧化酶系,预防和治疗多种由氧化应激引起的疾病[32-33]。植物精油作为芳香植物的独特成分,普遍具有抗氧化活性,可以清除多种自由基,而受到了越来越多的关注[34-35]。如迷迭香、牛至、罗勒、月桂、鼠尾草、玫瑰花等多种植物来源的精油均被证明具有良好的体外抗氧化活性[36-38],可以有效清除DPPH自由基、ABTS+自由基、羟基自由基、超氧阴离子自由基等,有望作为天然抗氧化剂用于食品、药品和化妆品工业,全部或部分替代丁基羟基茴香醚(butyl hydroxyanisole,BHA)、2,6-二叔丁基对甲酚(butylated hydroxytoluene,BHT)和没食子酸丙酯(propyl gallate,PG)等合成抗氧化剂,减轻合成抗氧化剂对机体带来的毒副作用,同时降低氧化应激对人体健康的损害[39]

4.2 抗菌活性研究

精油已广泛用于抗菌、抗病毒等方面,特别是在医药、卫生、化妆品、农业和食品工业中广泛应用[40-41]。近年来合成抗菌药物的不足和滥用导致菌株产生耐药性,给人体健康造成很大威胁,具有抗菌活性的天然植物精油有望用作新型抗菌药来改善这一现状[42],并且人们对天然提取物的接受度远高于合成药物,因此,利用具有广谱抗菌效果的植物精油作为新型抗菌剂来抑制食品腐败菌以及致病菌的活性对于缓解合成抑菌剂带来的副作用具有重要意义[43]

植物精油抑制微生物的生长通常与其疏水性有关,认可度比较高的假设是精油通过络合微生物细胞膜中的麦角固醇与微生物细胞膜相互作用,进而破坏微生物细胞膜的完整性,改变其通透性,导致小分子电解质外渗,影响微生物的新陈代谢和膜电位,进而引起微生物死亡[44-45]。多种来源的植物精油已经被证实具有一定的抑菌活性[46-48],如Wawrzynczak等[49]研究了杨梅叶精油对革兰氏阳性菌(金黄色葡萄球菌和粪肠杆菌)、革兰氏阴性菌(大肠杆菌和铜绿假单胞菌)以及真菌(白念珠菌和光滑念珠菌)的抑菌活性,试验结果证明该精油对几种受试菌均有一定的抑制作用,其中对白念珠菌和光滑念珠菌的抑制作用最明显,二者的最低抑菌浓度(minimum inhibitory concentration,MIC)为0.39%,最低杀菌浓度为(minimum bactericidal concentration,MBC)0.78%。此外,百里香精油对沙门氏菌、李斯特菌、金黄色葡糖球菌和大肠杆菌也表现出明显的抑菌活性,其MIC均为0.1 mg/mL[50]。植物精油抑菌活性及抑菌机理的研究已经逐渐深入,但是由于精油的疏水性、挥发性以及特殊而强烈的气味等特点导致其应用性较差,限制了植物精油作为天然抑菌剂在食品领域的应用。因此,解决精油存在的缺陷以提高其应用性是目前植物精油研究的重点方向之一。

4.3 抗肿瘤活性研究

众多研究表明植物精油中的萜烯类、酚类等成分具有良好的抗肿瘤活性,因此越来越多的科研工作者把目光集中在植物精油抗肿瘤活性的研究上,为开发高效、低毒的天然抗肿瘤药物不断探索[51-52]

通过文献检索发现,已经有多种植物来源的精油被证明具有体外抗肿瘤活性,如南洋杉科[53]、桃金娘科[54]、唇形科[55]、姜科[56]、马鞭草科[57]、柏科[58]等。植物精油因其复杂的成分和配比常被视为复方药,在发挥其生理作用时往往具有多层次、多靶点的特点。而阻滞肿瘤细胞周期和诱导肿瘤细胞凋亡是植物精油发挥其抗肿瘤活性最常见的作用机制,如Russo等[59]证明3种黎巴嫩常见的鼠尾草(Salvia aurea、Salvia judaica和Salvia viscosa)精油可以通过诱导细胞凋亡明显抑制人源黑色素瘤M14、A2058和A375细胞的生长。Langhasova等[60]则证明杨梅叶子精油可以通过诱导细胞凋亡来明显抑制人结肠癌 HCT8、SW620、SW480、HT29和Caco2细胞的增殖,其中Caco2最为敏感,MTT试验得到其24 h的IC50值仅为1.5μg/mL。此外,翻白草新鲜的根部精油也被证明可以通过线粒体介导的内源性途径诱导人膀胱癌T24细胞凋亡,抑制肿瘤的增殖[61]。Gomide等[57]则证明过江藤属植物精油可以将小鼠结肠癌CT26.WT细胞周期阻滞在G2/M期,阻碍细胞周期进程进而导致细胞凋亡。

此外,植物精油可以通过抑制新血管生成,阻断肿瘤生长和扩散所依赖的营养物质和氧气的运输进而抑制肿瘤细胞增殖和迁移。Bostanc1ogˇlu等[55]研究牛至精油对大鼠脂肪组织中RATECs细胞和5rp7细胞的增殖、凋亡、迁移和血管生成的影响,试验结果证明牛至精油能够抑制5RP7细胞增殖,诱导细胞凋亡,并且可以抑制RATEC细胞迁移和血管生成,发挥其抗肿瘤效果。

4.4 驱虫/杀虫活性研究

有机合成杀虫剂的泛滥使用给环境和人体健康造成极大伤害。为了避免有机合成杀虫剂的过度使用,研究人员将更多的目光集中在植物杀虫剂方面,植物精油因其独特的性能成为植物杀虫剂研究的热点[62-63]。区别于传统植物杀虫剂和无机杀虫剂,植物精油的杀虫活性主要是精油中多种成分之间相互协同作用的结果,因此克服了传统杀虫剂成分单一、作用持续时间短等缺点[64-65]。如Hzazika等[66]从柠檬草、佛手柑、薄荷、罗勒、樟脑、薰衣草等14种植物精油中筛选出对家蝇驱避作用较强的肉桂精油、丁香精油、香茅精油和柠檬草精油,并通过三混合、四混合以及三因素三水平的Box-Behnken试验筛选出协同作用最好的3种精油以及最佳配制比例(丁香精油59.68 mg、香茅精油59.67 mg、柠檬草精油63.50 mg),混合精油对家蝇的驱避效果明显强于单一精油。植物精油的亲脂性使其具有强渗透性,接触昆虫后可渗透到昆虫体内,影响昆虫体内各种酶的活性,导致其生理功能障碍,进而引起死亡[67-68]。如Czerniewicz等[69]研究发现3种菊科植物精油(Tanacetum vulgare、Tagetes patula和Artemisia absinthium)对碧桃蚜虫具有显著的致死作用(p<0.05),通过检测发现杀蚜活性强的精油对碧桃蚜虫体内乙酰胆碱酯酶的活性也有较强的抑制作用,因此可以判断出乙酰胆碱酯酶活性的下降是导致碧桃蚜虫死亡的重要因素。此外,植物精油对昆虫的沉降抑制作用也是其驱虫活性的关键,因其会导致昆虫野外觅食时间延长,进而增加昆虫的死亡率。通过研究发现精油对昆虫的沉降抑制作用与精油的驱避作用、吸吮抑制作用以及运动刺激作用息息相关[70]

4.5 抗焦虑/抑郁活性

抑郁症是一种多基因遗传并且受环境影响的复杂疾病,主要病理包括神经元/突触的减少,神经递质系统的改变和神经营养因子的丢失,尤其是大脑皮层和海马区。除了神经退行性症状以外[71],未治疗的抑郁症可能发展为自杀或代谢紊乱(糖尿病和心血管疾病等)[72]。目前,临床用于治疗抑郁症的药物主要是选择性5-羟色胺再摄取抑制剂,这类药物作用特点比较单一,长期使用容易产生毒性并产生耐药性,因此需要寻找新型高效且安全的抗抑郁类药物[73]。芳香疗法中应用植物精油来缓解神经方面的疾病已经有很长的历史,现代研究也有关于植物精油抗焦虑/抑郁方面的报道[74]。如Mahboubi[75]研究了鼠尾草精油的抗抑郁活性,通过大鼠腹腔注射鼠尾草精油并强迫游泳观察其抗抑郁效果,实验结果证明5%的鼠尾草精油具有最好的抗抑郁效果,小鼠静置时间显著低于1.8 mg/kg的氟西汀(p<0.05)。Zhong等[76]研究了复方精油(含薰衣草、甜橙、檀香、乳香、橙花楸、玫瑰和沉香精油)对失眠引起的小鼠焦虑、抑郁等的镇定作用,实验结果显示吸入复方精油可以显著提高小鼠大脑中5-羟色胺和γ-氨基丁酸(gamma-aminobutyric acid,GABA)的含量(p<0.05),说明该复方精油具有镇定安眠的作用。通过以上研究可知,植物精油在改善焦虑/抑郁等方面确实具有显著的疗效,作用机制也逐渐清晰,但是目前还缺少临床实验数据。

4.6 其他生理活性

除了上述较为普遍的生理活性外,植物精油还具有抗炎[77]、镇静和麻醉[78]以及免疫调节[79]等生理活性。如Da Silva等[80]以南美鲶鱼为模型研究了丁香罗勒精油和生姜精油的麻醉作用,实验结果显示2种精油对鲶鱼均有麻醉作用,并且丁香罗勒精油对鲶鱼的血液指标和血糖均没有显著性影响(p>0.05),2种精油的麻醉诱导时间与精油浓度均呈显著的负相关性(p<0.05),恢复时间与精油浓度均呈显著正相关(p<0.05),但是丁香罗勒精油的麻醉诱导时间要短于生姜精油,因此丁香罗勒精油对南美鲶鱼的麻醉效果要优于生姜精油。

5 结语与展望

近年来人们对合成食品添加剂造成的危害越来越重视,因而对于天然成分更为推崇,催生了众多关于天然产物的研究,植物精油的研究就是其中之一。植物精油是小分子萜烯类化合物的天然混合物,常常作为复方应用,各化合物之间协同发挥其生理活性。因此,植物精油的质量控制尤为重要,在研究过程中需要借助成分鉴定等手段进行控制。除此之外,植物精油的疏水性、强烈的气味、挥发性、不稳定性等都限制了其在食品领域中的应用。因此,在研究植物精油生理活性及作用机理的同时还需要根据精油的理化特性改善其应用缺陷以提高其应用性,实现真正意义上的研发与应用。

参考文献:

[1] RAUT J S,KARUPPAYIL S M.A status review on the medicinal properties of essential oils[J].Industrial Crops and Products,2014,62:250-264.

[2] BOURGOU S,TAMMAR S,SALEM N,et al.Phenolic composition,essential oil,and antioxidant activity in the aerial part of Artemisia herba-alba from several provenances:A comparative study[J].International Journal of Food Properties,2016,19(3):549-563.

[3] SCUR M C,PINTO F S,PANDINI J A,et al.Antimicrobial and antioxidant activity of essential oil and different plant extracts of Psidium cattleianum Sabine[J].Brazilian Journal of Biology,2016,76(1):101-108.

[4] BARBOSA L C,FILOMENO C A,TEIXEIRA R R.Chemical variability and biological activities of Eucalyptus spp.essential oils[J].Molecules,2016,21(12):1671.

[5] YUAN R F,ZHANG D K,YANG J H,et al.Review of aromatherapy essential oils and their mechanism of action against migraines[J].Journal of Ethnopharmacology,2021,265:113326.

[6] SOLÓRZANO-SANTOS F,MIRANDA-NOVALES M G.Essential oils from aromatic herbs as antimicrobial agents[J].Current Opinion in Biotechnology,2012,23(2):136-141.

[7] RIBEIRO-SANTOS R,ANDRADE M,DE MELO N R,et al.Use of essential oils in active food packaging:Recent advances and future trends[J].Trends in Food Science&Technology,2017,61:132-140.

[8] PAVELA R,BENELLI G.Essential oils as ecofriendly biopesticides?Challenges and constraints[J].Trends in Plant Science,2016,21(12):1000-1007.

[9] GROSSO C,COELHO J A,URIETA J S,et al.Herbicidal activity of volatiles from coriander,winter savory,cotton lavender,and thyme isolated by hydrodistillation and supercritical fluid extraction[J].Journal of Agricultural and Food Chemistry,2010,58(20):11007-11013.

[10] JIMENEZ-LOPEZ C,PEREIRA A G,LOURENÇO-LOPES C,et al.Main bioactive phenolic compounds in marine algae and their mechanisms of action supporting potential health benefits[J].Food Chemistry,2021,341:128262.

[11] GRAJZER M,WIATRAK B,G BAROWSKI T,et al.Chemistry,oxidative stability and bioactivity of oil extracted from Rosa rugosa(Thunb.)seeds by supercritical carbon dioxide[J].Food Chemistry,2021,335:127649.

[12] MARZLAN A A,MUHIALDIN B J,ZAINAL ABEDIN N H,et al.Optimized supercritical CO2extraction conditions on yield and quality of torch ginger(Etlingera elatior(Jack)R.M.Smith)inflorescence essential oil[J].Industrial Crops and Products,2020,154:112581.

[13] GARCÍA-PÉREZ J S,CUÉLLAR-BERMU DEZ S P,ARÉVALOGALLEGOS A,et al.Influence of supercritical CO2extraction on fatty acids profile,volatile compounds and bioactivities from Rosmarinus officinalis[J].Waste and Biomass Valorization,2020,11(4):1527-1537.

[14] SOH S H,JAIN A,LEE L Y,et al.Optimized extraction of patchouli essential oil from Pogostemon cablin Benth.with supercritical carbon dioxide[J].Journal of Applied Research on Medicinal and Aromatic Plants,2020,19:100272.

[15] DURANTE M,FERRAMOSCA A,TREPPICCIONE L,et al.Application of response surface methodology(RSM)for the optimization of supercritical CO2extraction of oil from patè olive cake:Yield,content of bioactive molecules and biological effects in vivo[J].Food Chemistry,2020,332:127405.

[16] PINTO D,VIEIRA E F,PEIXOTO A F,et al.Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology[J].Food Chemistry,2021,334:127521.

[17] SAMADI M,ZAINAL ABIDIN Z,YOSHIDA H,et al.Towards higher oil yield and quality of essential oil extracted from Aquilaria malaccensis wood via the subcritical technique[J].Molecules,2020,25(17):3872.

[18] CHAMUTPONG S,CHEN C J,CHAIPRATEEP E.Optimization ultrasonic-microwave-assisted extraction of phenolic compounds from Clinacanthus nutans using response surface methodology[J].Journal of Advanced Pharmaceutical Technology&Research,2021,12(2):190-195.

[19] KOSAR M,ÖZEK T,GÖGER F,et al.Comparison of microwaveassisted hydrodistillation and hydrodistillation methods for the analysis of volatile secondary metabolites[J].Pharmaceutical Biology,2005,43(6):491-495.

[20] ZORGA J,KUNICKA-STYCZY SKA A,GRUSKA R,et al.Ultrasound-assisted hydrodistillation of essential oil from celery seeds(Apium graveolens L.)and its biological and aroma profiles[J].Molecules,2020,25(22):5322.

[21] FIORINI D,SCORTICHINI S,BONACUCINA G,et al.Cannabidiol-enriched hemp essential oil obtained by an optimized microwave-assisted extraction using a central composite design[J].Industrial Crops and Products,2020,154:112688.

[22] DARWISH R S,SHAWKY E,EL NAGGAR E M B,et al.Evaluation of the effect of seasonal variation and organ selection on the chemical composition and antimicrobial activity of the essential oil of oriental-cedar(Platyclaudus orientalis(L.)Franco)[J].Journal of Essential Oil Research,2021,33(1):69-79.

[23] ESEN G,DILEK AZAZ A,KURKCUOGLU M,et al.Essential oil and antimicrobial activity of wild and cultivated Origanum vulgare L.subsp.hirtum(Link)letswaart from the Marmara Region,Turkey[J].Flavour and Fragrance Journal,2007,22(5):371-376.

[24] GIANNOULIS K D,EVANGELOPOULOS V,GOUGOULIAS N,et al.Could bio-stimulators affect flower,essential oil yield,and its composition in organic lavender(Lavandula angustifolia)cultivation?[J].Industrial Crops and Products,2020,154:112611.

[25] ZHANG Y,TENG B,WANG D Z,et al.Discovery of a specific volatile substance from rice grain and its application in controlling stored-grain pests[J].Food Chemistry,2021,339:128014.

[26] FASCELLA G,D’ANGIOLILLO F,RUBERTO G,et al.Agronomic performance,essential oils and hydrodistillation wastewaters of Lavandula angustifolia grown on biochar-based substrates[J].Industrial Crops and Products,2020,154:112733.

[27] ZORIN,KOPJAR N,RODRIGUEZ J V,et al.Protective effects of olive oil phenolics oleuropein and hydroxytyrosol against hydrogen peroxide-induced DNA damage in human peripheral lymphocytes[J].Acta Pharmaceutica,2021,71(1):131-141.

[28] EBADOLLAHI S H,POURAMIR M,ZABIHI E,et al.The effect of arbutin on the expression of tumor suppressor P53,BAX/BCL-2 ratio and oxidative stress induced by tert-butyl hydroperoxide in fibroblast and LNcap cell lines[J].Cell Journal,2021,22(4):532-541.

[29] FRISTIOHADY A,LEORITA M,MALIK F,et al.Pancreatic histological profile on the efficacy of extract of Etlingera calophrys(K.schum)A.D.poulsen stem against streptozotocin-induced diabetes in diabetic model rats[J].Biointerface Research in Applied Chemistry,2020,11(2):9209-9217.

[30] CHOI S H,LEE R,NAM S M,et al.Ginseng gintonin,aging societies,and geriatric brain diseases[J].Integrative Medicine Research,2021,10(1):100450.

[31] FILIPPOV M A,TATARNIKOVA O G,POZDNYAKOVA N V,et al.Inflammation/bioenergetics-associated neurodegenerative pathologies and concomitant diseases:A role of mitochondria targeted catalase and xanthophylls[J].Neural Regeneration Research,2021,16(2):223-233.

[32]WANG L,LI X Y,WANG H C.Physicochemical properties,bioaccessibility and antioxidant activity of the polyphenols from pine cones of Pinus koraiensis[J].International Journal of Biological Macromolecules,2019,126:385-391.

[33] YI J J,QU H,WU Y Z,et al.Study on antitumor,antioxidant and immunoregulatory activities of the purified polyphenols from pinecone of Pinus koraiensis on tumor-bearing S180 mice in vivo[J].International Journal of Biological Macromolecules,2017,94:735-744.

[34] MEMARZADEH S M,GHOLAMI A,PIRBALOUTI A G,et al.Bakhtiari savory(Satureja bachtiarica Bunge.)essential oil and its chemical profile,antioxidant activities,and leaf micromorphology under green and conventional extraction techniques[J].Industrial Crops and Products,2020,154:112719.

[35] SABER M,HARHAR H,BOUYAHYA A,et al.Chemical composition and antioxidant activity of essential oil of sawdust from Moroccan thuya Tetraclinis articulata(vahl)Masters[J].Biointerface Research in Applied Chemistry,2020,11(1):7912-7920.

[36] OLMEDO R H,ASENSIO C M,GROSSO N R.Thermal stability and antioxidant activity of essential oils from aromatic plants farmed in Argentina[J].Industrial Crops and Products,2015,69:21-28.

[37] OZER M S,SARIKURKCU C,CEYLAN O,et al.A comprehensive study on chemical composition,antioxidant and enzyme inhibition activities of the essential oils of Chenopodium botrys collected from three different parts of Turkey[J].Industrial Crops and Products,2017,107:326-331.

[38] YI F P,SUN J,BAO X L,et al.Influence of molecular distillation on antioxidant and antimicrobial activities of rose essential oils[J].LWT-Food Science and Technology,2019,102:310-316.

[39] YOUSSEF F S,EID S Y,ALSHAMMARI E,et al.Chrysanthemum indicum and Chrysanthemum morifolium:Chemical composition of their essential oils and their potential use as natural preservatives with antimicrobial and antioxidant activities[J].Foods,2020,9(10):1460.

[40] SADEKUZZAMAN M,MIZAN M F R,KIM H S,et al.Activity of thyme and tea tree essential oils against selected foodborne path-ogens in biofilms on abiotic surfaces[J].LWT-Food Science and Technology,2018,89:134-139.

[41] DU C Y,LI Y N,FAN J T,et al.Chemical composition,antioxidant and antimicrobial activities of essential oil from the leaves of Lindera fragrans oliv[J].Records of Natural Products,2020,15(1):65-70.

[42] SAWICKI R,SIENIAWSKA E,SWATKO-OSSOR M,et al.The frequently occurring components of essential oils beta elemene and R-limonene alter expression of dprE1 and clgR genes of Mycobacterium tuberculosis H37Ra[J].Food and Chemical Toxicology,2018,112:145-149.

[43] FALLEH H,BEN JEMAA M,SAADA M,et al.Essential oils:A promising eco-friendly food preservative[J].Food Chemistry,2020,330:127268.

[44] MUNIZ D F,DOS SANTOS BARBOSA C R,ALENCAR DE MENEZES I R,et al.In vitro and in silico inhibitory effects of synthetic and natural eugenol derivatives against the NorA efflux pump in Staphylococcus aureus[J].Food Chemistry,2021,337:127776.

[45] DA ROCHA NETO A C,NAVARRO B B,CANTON L,et al.Antifungal activity of palmarosa(Cymbopogon martinii),tea tree(Melaleuca alternifolia)and star anise(Illicium verum)essential oils against Penicillium expansum and their mechanisms of action[J].LWTFood Science and Technology,2019,105:385-392.

[46] SAM L N,HUONG L T,MINH P N,et al.Chemical composition and antimicrobial activity of the rhizome essential oil of Curcuma sahuynhensis from Vietnam[J].Journal of Essential Oil Bearing Plants,2020,23(4):803-809.

[47] STANKOV S,FIDAN H,STEFANOVA G,et al.Chemical composition and antimicrobial activity of essential oil from aerial part(leaves and fruit)of Eucalyptus gomphocephala DC[J].Journal of Essential Oil Bearing Plants,2020,23(2):204-212.

[48] COSTA W K,DA COSTA GOMES N O,SOUZA DOS SANTOS B,et al.First report on the chemical composition of leaf essential oil of Myrciaria pilosa Sobral&Couto and its antimicrobial and antivirulence activities against Staphylococcus aureus[J].Natural Product Research,2022,36(9):2429-2433.

[49] WAWRZYNCZAK K,SADOWSKA B,WI CKOWSKA-SZAKIEL M,et al.Composition and antimicrobial activity of Myrica gale L.leaf and flower essential oils and hydrolates[J].Records of Natural Products,2020,15(1):35-45.

[50] RADÜNZ M,DOS SANTOS HACKBART H C,CAMARGO T M,et al.Antimicrobial potential of spray drying encapsulated thyme(Thymus vulgaris)essential oil on the conservation of hamburger-like meat products[J].International Journal of Food Microbiology,2020,330:108696.

[51] DA ANUNCIAÇÃO T A,COSTA R G A,DE LIMA E J S P,et al.In vitro and in vivo inhibition of HCT116 cells by essential oils from bark and leaves of Virola surinamensis(Rol.Ex Rottb.)Warb.(Myristicaceae)[J].Journal of Ethnopharmacology,2020,262:113166.

[52] TIAN M Y,LIU T T,WU X H,et al.Chemical composition,antioxidant,antimicrobial and anticancer activities of the essential oil from the rhizomes of Zingiber striolatum Diels[J].Natural Product Research,2020,34(18):2621-2625.

[53] ELKADY W M,AYOUB I M.Chemical profiling and antiproliferative effect of essential oils of two Araucaria species cultivated in E-gypt[J].Industrial Crops and Products,2018,118:188-195.

[54] DO NASCIMENTO K F,MOREIRA F M F,ALENCAR SANTOS J,et al.Antioxidant,anti-inflammatory,antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw.and spathulenol[J].Journal of Ethnopharmacology,2018,210:351-358.

[55] BOSTANC1OGˇLU R B,KÜRKÇÜOGˇLU M,BA ER K H C,et al.Assessment of anti-angiogenic and anti-tumoral potentials of Origanum onites L.essential oil[J].Food and Chemical Toxicology,2012,50(6):2002-2008.

[56] XIANG H P,ZHANG L Y,XI L,et al.Phytochemical profiles and bioactivities of essential oils extracted from seven Curcuma herbs[J].Industrial Crops and Products,2018,111:298-305.

[57] GOMIDE M,LEMOS F,REIS D,et al.Identification of dysregulated microRNA expression and their potential role in the antiproliferative effect of the essential oils from four different Lippia species against the CT26.WT colon tumor cell line[J].Revista Brasileira De Farmacognosia,2016,26(5):627-633.

[58] ZHU J J,YANG J J,WU G J,et al.Comparative antioxidant,anticancer and antimicrobial activities of essential oils from Semen Platycladi by different extraction methods[J].Industrial Crops and Products,2020,146:112206.

[59] RUSSO A,FORMISANO C,RIGANO D,et al.Comparative phytochemical profile and antiproliferative activity on human melanoma cells of essential oils of three Lebanese Salvia species[J].Industrial Crops and Products,2016,83:492-499.

[60] LANGHASOVA L, HANUSOVA V, REZEK J, et al.Essential oil from Myrica rubra leaves inhibits cancer cell proliferation and induces apoptosis in several human intestinal lines[J].Industrial Crops and Products,2014,59:20-26.

[61] ZHANG J,HUANG R Z,CAO H J,et al.Chemical composition,in vitro anti-tumor activities and related mechanisms of the essential oil from the roots of Potentilla discolor[J].Industrial Crops and Products,2018,113:19-27.

[62] LUZ T R S A,LEITE J A C,SANTOS SILVA DE MESQUITA L,et al.Seasonal variation in the chemical composition and biological activity of the essential oil of Mesosphaerum suaveolens(L.)Kuntze[J].Industrial Crops and Products,2020,153:112600.

[63] GAIRE S,LEWIS C D,BOOTH W,et al.Bed bugs,Cimex lectularius L.,exhibiting metabolic and target site deltamethrin resistance are susceptible to plant essential oils[J].Pesticide Biochemistry and Physiology,2020,169:104667.

[64] GONZALES A P P F,YOSHIOKA E T O,DELGADO MATHEWS P,et al.Anthelminthic efficacy of Cymbopogon citratus essential oil(Poaceae)against monogenean parasites of Colossoma macropomum(Serrasalmidae),and blood and histopathological effects[J].Aquaculture,2020,528:735500.

[65] FILOMENO C A,ALMEIDA BARBOSA L C,TEIXEIRA R R,et al.Chemical diversity of essential oils of Myrtaceae species and their insecticidal activity against Rhyzopertha dominica[J].Crop Protection,2020,137:105309.

[66] HAZARIKA H,TYAGI V,KRISHNATREYYA H,et al.Essential oil based controlled-release non-toxic evaporating tablet provides effective repellency against Musca domestica[J].Acta Tropica,2020,210:105620.

[67] PIRI A,SAHEBZADEH N,ZIBAEE A,et al.Toxicity and physiological effects of ajwain(Carum copticum,Apiaceae)essential oil and its major constituents against Tuta absoluta(Meyrick)(Lepidoptera:Gelechiidae)[J].Chemosphere,2020,256:127103.

[68] FRANÇA L P,AMARAL A C F,DE S RAMOS A,et al.Piper capitarianum essential oil:A promising insecticidal agent for the management of Aedes aegypti and Aedes albopictus[J].Environmental Science and Pollution Research,2021,28(8):9760-9776.

[69] CZERNIEWICZ P,CHRZANOWSKI G,SPRAWKA I,et al.Aphicidal activity of selected Asteraceae essential oils and their effect on enzyme activities of the green peach aphid,Myzus persicae(Sulzer)[J].Pesticide Biochemistry and Physiology,2018,145:84-92.

[70] PLATA-RUEDA A, MARTÍNEZ L C, DA SILVA ROLIM G, et al.Insecticidal and repellent activities of Cymbopogon citratus(Poaceae)essential oil and its terpenoids(citral and geranyl acetate)against Ulomoides dermestoides[J].Crop Protection,2020,137:105299.

[71] LO BUONO V,PALMERI R,DE SALVO S,et al.Anxiety,depression,and quality of life in Parkinson’s disease:The implications of multidisciplinary treatment[J].Neural Regeneration Research,2021,16(3):587-590.

[72] LIU J,HAN Y S,LIU L,et al.Abnormal Glu/mGluR2/3/PI3K pathway in the hippocampal neurovascular unit leads to diabetes-related depression[J].Neural Regeneration Research,2021,16(4):727-733.

[73] WANG S N,YAO Z W,ZHAO C B,et al.Discovery and proteomics analysis of effective compounds in Valeriana jatamansi Jones for the treatment of anxiety[J].Journal of Ethnopharmacology,2021,265:113452.

[74] ZHANG N,ZHANG L,FENG L Y,et al.Cananga odorata essential oil reverses the anxiety induced by 1-(3-chlorophenyl)piperazine through regulating the MAPK pathway and serotonin system in mice[J].Journal of Ethnopharmacology,2018,219:23-30.

[75] MAHBOUBI M. Clary sage essential oil and its biological activities[J].Advances in Traditional Medicine,2020,20(4):517-528.

[76] ZHONG Y,ZHENG Q,HU P Y,et al.Sedative and hypnotic effects of compound Anshen essential oil inhalation for insomnia[J].BMC Complementary and Alternative Medicine,2019,19(1):306.

[77] DARWISH R S,HAMMODA H M,GHAREEB D A,et al.Efficacydirected discrimination of the essential oils of three Juniperus species based on their in-vitro antimicrobial and anti-inflammatory activities[J].Journal of Ethnopharmacology,2020,259:112971.

[78] BOAVENTURA T P,SOUZA C F,FERREIRA A L,et al.Essential oil of Ocimum gratissimum(Linnaeus,1753)as anesthetic for Lophiosilurus alexandri:Induction,recovery,hematology,biochemistry and oxidative stress[J].Aquaculture,2020,529:735676.

[79] LANG M,FERRON P J,BURSZTYKA J,et al.Evaluation of immunomodulatory activities of essential oils by high content analysis[J].Journal of Biotechnology,2019,303:65-71.

[80] DA SILVA L A,MARTINS M A,SANTO F E,et al.Essential oils of Ocimum gratissimum and Zingiber officinale as anesthetics for the south American catfish Pseudoplatystoma reticulatum[J].Aquaculture,2020,528:735595.

Plant Essential Oil Extraction and Physiological Activities

ZHANG Yan-dong1,ZHANG Yan-jun2,LI Teng-fei1*

(1.School of Life Science and Food Engineering,Hebei University of Engineering,Handan 056038,Hebei,China;2.Department of Resources and Environmental Engineering,Hebei Vocational University of Technology and Engineering,Xingtai 054000,Hebei,China)

Abstract:Plant essential oil is a special plant extract,which is favored because of its strong aromatic smell and various physiological activities.At present,the research on the plant essential oil mostly focuses on extraction processes,component analyses,physiological activities,and mechanisms.To facilitate that have a more comprehensive understanding of the research progress of the plant essential oil,this article mainly introduced the extraction process,component analysis methods,and physiological activities of plant essential oils,hoping to provide theoretical support for the research and application of the plant essential oil.

Key words:plant essential oil;terpene;extraction;analysis of components;physiological activities

DOI:10.12161/j.issn.1005-6521.2023.09.029

基金项目:河北省重点研发计划项目(22325501D)

作者简介:张艳东(1990—),女(汉),讲师,博士,研究方向:天然产物分离纯化与生理活性。

*通信作者:李腾飞(1987—),男(汉),副教授,博士,研究方向:食品安全检测与控制。

引文格式:

张艳东,张艳俊,李腾飞.植物精油的提取及其生理活性研究进展[J].食品研究与开发,2023,44(9):203-210.

ZHANG Yandong,ZHANG Yanjun,LI Tengfei.Plant Essential Oil Extraction and Physiological Activities[J].Food Research and Development,2023,44(9):203-210.

加工编辑:张璐

收稿日期:2022-03-09