联合国粮食及农业组织和世界卫生组织提出益生菌的定义:当摄入足够数量时,对宿主产生健康益处的活性微生物[1]。过去数十年,益生菌在改善人体健康和动植物生长健康方面的作用得到大量研究证实[2-3]。随着研究的不断深入,越来越多的研究发现益生菌的死菌体及其代谢产物也具有多种功能活性,能够刺激组织发育,影响机体的营养水平和生理功能[4-6]。Tsilingiri 等[7]首次将这种无生命死菌体及其成分称为“后生元”。2021 年国际益生菌和益生元科学协会在全球范围发布了后生元的共识声明,将后生元定义为对宿主健康有益的、遗传背景明确的灭活微生物和/或菌体成分,包括或不包括其代谢产物[8]。
后生元具有多种功能特性,包括抗氧化、抗炎、抗癌、平衡肠道菌群、增强肠道上皮屏障功能、增强免疫调节和促进新陈代谢等[9]。除上述功能外,与益生菌相比,后生元还具有多个优点[10]:一是更稳定,具有更长的保质期和更好的环境耐受性;二是安全性更高,对一些特殊人群如新生儿、敏感人群同样适应。后生元也不受抗生素的干扰抑制,不存在传递耐药基因的风险;三是具有更广泛的作用靶点;四是后生元中的活性物质更易于被肠道吸收,提高利用率;五是后生元具有更广泛的作用靶点,不仅限于肠道,还包括口腔、皮肤、泌尿生殖道或鼻咽等。因此,后生元应用范围非常广泛,可以用于食品、保健品、化妆品、饲料等多个行业中,具有广阔的市场应用前景。
后生元主要分为菌体成分和菌体代谢物两部分。其中菌体成分主要包括肽聚糖、磷壁酸、脂壁酸、缩醛磷脂、膜蛋白以及胞内多糖等;菌体代谢物包括维生素、脂质、有机酸、细菌素、酵素、胞外多糖、短链脂肪酸等[11],复杂的组成成分也决定了其功能的多样性,大量的体内实验、体外实验(表1)证实了后生元功能的多样性。
表1 后生元体内体外实验
Table 1 In vivo and in vitro experiments of postbiotics
体内实验后生元 实验对象 主要研究结论格氏乳杆菌CP2305 的灭活菌体 健康志愿者 实验组肠道中双歧杆菌含量明显上升乳酸乳球菌G50 的灭活菌体 健康雄性小鼠 刺激免疫球蛋白A 的分泌,增强肠道免疫力嗜热链球菌的灭活菌体 肥胖2 型糖尿病大鼠 降低了空腹血糖水平,减轻了葡萄糖耐受性植物乳杆菌RG14 的上清液 健康的、刚断奶的雄性羔羊 改善肠道菌群,减缓断奶应激对羔羊生长的不利影响鼠李糖乳杆菌GG 的代谢物 8~10 周龄的C57BL/6 小鼠 促进幼鼠肠道屏障的形成鼠李糖乳杆菌GG 的代谢物 C57BL/6J 小鼠和Balb/cJ 小鼠 刺激TGF-β 信号通路,影响调节性T 细胞短乳杆菌SBC8803 的灭活菌体 DSS 诱导的结肠炎小鼠 诱导热休克蛋白,激活p38 促分裂素原活化蛋白激酶通路,抑制肿瘤坏死因子α、白介素-1β 和白介素-12 的表达,增强肠上皮的屏障功能植物乳杆菌b240 的灭活菌体 鼠伤寒杆菌感染C57BL/6 小鼠肠道模型 刺激免疫球蛋白A 的分泌,增强肠道免疫力体外实验后生元 实验对象 主要研究结论乳杆菌和双歧杆菌的上清液 T84 细胞系和Caco2 细胞系 上清液中的活性物质阻止肠侵袭性大肠杆菌侵入肠道细胞长双歧杆菌CECT-7347 的灭活菌体 HT-29 细胞系 激活免疫相关通路,增强机体抗氧化应激的能力,减少急性炎症反应和肠道屏障破坏格氏乳杆菌TMC0356 的灭活菌体 J774.1 细胞系 灭活处理提高了TMC0356 菌体诱导J774.1 细胞产生白介素-12 的能力干酪乳杆菌DG 的上清液 IBS-D 体外器官模型 降低白介素-1α、白介素-6 和白介素-8 mRNA 水平,提高白介素-10 mRNA 水平
肠道菌群与宿主健康存在着相互作用的关系,后生元可以通过改善肠道菌群,促进宿主健康。在一项随机双盲平行临床实验中,与安慰剂组相比,口服巴氏杀菌的格氏乳杆菌CP2305 明显改善了实验组成员的焦虑和睡眠障碍状况,粪便菌群分析发现,实验组肠道中双歧杆菌含量明显上升,但作用的具体机制尚不清楚,需要进一步研究[12]。Kimoto-Nira 等[13]对衰老加速的小鼠模型研究发现,口服热灭活的乳酸乳球菌G50能够刺激免疫球蛋白A(immunoglobulin A,IgA)的分泌、增强肠道免疫力、抑制有害菌的增殖。在一项后生元治疗2 型糖尿病大鼠模型的研究中,热灭活的嗜热链球菌不仅能够降低大鼠的空腹血糖水平,减轻葡萄糖耐受性和胰岛素抵抗,还有效提高了瘤胃球菌、韦荣球菌等有益菌丰度[14]。Izuddin 等[15]的研究报道了后生元对断奶羔羊的益生效果,结果表明,服用植物乳杆菌RG14 无细胞上清液能提高产琥珀酸杆菌和黄色瘤胃球菌数量,降低产甲烷菌数量,同时提高宿主的营养素摄入和营养素消化率,减缓断奶应激对羔羊生长的不利影响。此外,一项体外实验显示16 株乳杆菌和双歧杆菌的无细菌上清液均能够减少肠侵袭性大肠杆菌(enterinvasive E.coli,EIEC)对T84 和Caco2 细胞的入侵,实验结果说明这些无细胞上清液能够阻止EIEC 侵袭肠道细胞,但作用机制仍需进一步探索[16]。肠道菌群与宿主之间存在多种信号传递系统,后生元可以改善肠道菌群结构并通过肠-X 轴预防和辅助治疗多种疾病,例如慢性肝病[17]、肺结核疾病[18]等。鉴于后生元的安全特性,其平衡肠道菌群的功能有望用于帮助新生儿建立和完善有益的肠道菌群[19]。
肠道上皮细胞是肠道的第一道防线,不仅是物理屏障,还与宿主免疫系统相互作用,限制有害物质和微生物移位到身体其他部位[20]。后生元中多种成分均能够修复或增强肠道上皮屏障功能。Gao 等[21]发现鼠李糖乳酪杆菌GG(Lacticaseibacillus rhamnosus GG,LGG)的发酵上清液能够促进幼鼠肠道屏障的形成,从发酵上清液中纯化得到一种分泌蛋白HM0539,证明其对肠道屏障具有较强的保护作用,表现为促进肠道黏液蛋白表达,防止脂多糖或肿瘤坏死因子诱导肠道屏障损伤等,提示这种发酵上清液对新生儿肠道屏障的形成可能会有帮助。可溶性蛋白p40 同样是鼠李糖乳杆菌GG 的代谢产物,功能分析显示,p40 能够抑制肠上皮细胞凋亡,促进肠上皮细胞中黏蛋白的产生,通过上调肠上皮细胞中增殖诱导配体(a proliferation inducing li-gand,APRIL)的表达来促进IgA 的产生,从而改善肠损伤和结肠炎。p40 作用的信号机制主要是活化去整合素-金属蛋白酶17(a disintegrin and metalloproteinase 17,ADAM-17)、释放肝素结合性表皮生长因子(heparin-binding epidermal growth factor,HB-EGF),进而激活肠上皮细胞中表皮生长因子受体(epithelial growth factor receptor,EGFR),后者会刺激下游多种信号通路,如促分裂素原活化蛋白激酶(mitogen-activated protein kinases,MAPK)信号通路,进而诱导细胞增殖、分化、迁移、存活等多种细胞反应[22-24]。Ueno 等[25]发现热灭活的短乳杆菌SBC8803 能够提高葡聚糖硫酸钠(dextran sulfate sodium salt,DSS)诱导的结肠炎小鼠存活率,进一步研究发现,热灭活的短乳杆菌SBC8803 通过诱导热休克蛋白(heat shock proteins,HSPs)、激活丝裂原活化蛋白激酶p38(p38 MAPK)通路,并调节肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白介素-1β(interleukin-1β,IL-1β)和白介素-12(interleukin-12,IL-12)的表达增强肠道屏障功能,从而改善结肠炎小鼠模型的肠道损伤。后生元具有与活性益生菌类似的益生功效,且更加安全,在不适合活性益生菌的条件下,后生元是预防及治疗炎症性肠病有效且有潜力的选择[26-27]。
后生元还可通过增强机体的免疫调节功能,尤其肠道免疫来改善机体健康状况。肠道是人体最大的免疫器官,约占人体免疫系统的70%[28],后生元通过肠道调节宿主免疫系统,从而提高机体免疫力[29]。Martorell等[30]的研究发现,灭活后的长双歧杆菌保留了抗氧化应激损伤的能力,同时它还通过激活与先天免疫功能相关的通路,减少急性炎症反应、避免肠道屏障被破坏,并抑制有害菌定植。研究人员通过体外实验证明了嗜酸乳杆菌和干酪乳杆菌上清液能够减少TNF-α 的分泌,增加抗炎因子白介素-10(interleukin-10,IL-10)的分泌,从而达到抗炎的作用[31]。De Marco 等[32]的研究发现嗜酸乳杆菌、干酪乳杆菌、乳酸乳球菌、罗伊氏乳杆菌、布拉迪酵母菌的无细胞上清液能够下调结肠上皮HT-29 细胞中前列腺素E2 和IL-8 的表达,并调节巨噬细胞IL-1β、白介素-6(interleukin-6,IL-6)、TNF-α和IL-10 的表达,具有独特的抗炎活性。还有研究发现热灭活的格氏乳杆菌TMC0356 免疫调节功能优于活的格氏乳杆菌TMC0356,具体表现在热灭活的格氏乳杆菌TMC0356 能够诱导巨噬细胞产生更多的IL-12以及对N-乙酰壁酰胺酶具有更强的抵抗力[33]。在一项离体器官模型实验中,干酪乳杆菌DG 的发酵上清液能够降低腹泻型肠易激综合征(irritable bowel syndrome-D,IBS-D)患者的回肠和结肠黏膜中的白介素-1α(interleukin-1α,IL-1α)、IL-6 和白介素-8(interleukin-8,IL-8)mRNA 水平,提高IL-10 mRNA 水平,从而减轻回肠和结肠黏膜的炎症反应[34]。一项小鼠模型实验发现,热灭活的植物乳杆菌b240 通过刺激IgA 分泌,可以有效保护宿主免受鼠伤寒沙门氏菌的侵袭[35]。类似的还有热灭活的副干酪乳杆菌MCC1849 能够诱导肠组织中Ig+细胞分泌免疫球蛋白(IgA)并影响肠道集合淋巴结中滤泡辅助性T 细胞的产生,进而刺激宿主的获得性免疫应答[36]。研究表明,后生元调节免疫的功能特性对新型冠状病毒肺炎-19(corona virus disease 2019,COVID-19)患者的辅助治疗和康复有一定的帮助[37-38]。
后生元调节机体代谢的方式包括活性物质进入人体循环系统直接调节和通过调节肠道菌群进行间接调节[39]。临床实验表明,后生元对多种代谢性疾病的治疗均有辅助效果[40]。Lee 等[41]通过研究后生元对高脂饮食(high fat diet,HFD)小鼠模型的影响发现,定期口服植物乳杆菌L-14 裂解物能够刺激脂肪细胞分化早期的腺苷酸激活蛋白激酶(monophosphate activated protein kinase,AMPK)信号通路,抑制脂肪前体细胞3T3-L1 和人骨髓间充质干细胞(human bone marrow mesenchymal stem cells,HBM-MSC)向成熟脂肪细胞的分化,控制小鼠体重增加和脂质分布,因此,植物乳杆菌L-14 提取物可用于预防和治疗肥胖和代谢紊乱。Montazeri-Najafabady 等[42]研究了5 株益生菌(嗜酸乳杆菌、罗伊氏乳杆菌、干酪乳杆菌、长双歧杆菌和凝结芽孢杆菌)的细胞裂解液和上清液对卵巢切除大鼠的影响,结果表明,多种后生元对宿主全身骨密度(bone mineral density,BMD)均有明显提高,其中干酪乳杆菌上清液明显增加了脊柱BMD,干酪乳杆菌和凝结芽孢杆菌裂解液和上清液、长双歧杆菌和嗜酸乳杆菌的裂解液明显增强股骨BMD;虽然后生元不能明显提高血清钙浓度,但是提高了宿主的钙吸收率,因此其在改善女性绝经后骨质疏松方面有应用潜力。此外,ADR-159(热灭活的发酵乳杆菌和德氏乳杆菌共培养发酵液)能够明显降低雄性小鼠皮质酮水平,改变神经代谢物水平,从而缓解抑郁症状[43]。Humam 等[44]的研究发现,植物乳杆菌RI11 的无细胞上清液可提高热应激肉鸡的抗氧化酶活性,上调IL-10 的mRNA 表达,并下调IL-8、TNF-α、热激蛋白70 和α-酸性糖蛋白水平,因此RI11 有望作为抗生素的替代品用于减轻热应激对肉鸡的不利影响。此外,还有研究发现,饲料中添加后生元可以改善家兔的代谢状态、提高其精液质量[45]。基于后生元的功能特性和安全性,其有望成为一类新型且安全的饲料添加剂[46]。
后生元除了对宿主健康有多种功效,在食品储存、食品包装和生物膜控制等方面也有较好的应用前景。由于后生元对温度、氧气等环境的耐受性较高,因此对运输及贮藏条件没有限制,这使其在食品工业中的应用范围更加广泛[47]。在食品中添加后生元,不仅使食品增加了益生功能,还能够抑制病原菌起到防腐作用,做到“多效合一”。后生元的防腐作用主要与其成分中含有细菌素、胞外多糖、短链脂肪酸等抑菌活性物质有关[48]。根据产品类型,后生元的添加方式有混合和喷涂2 种,试验表明两种方式均可有效抑制病原菌[49-50]。还有研究发现后生元能够缓解食品过敏症状[51-52]。后生元还可以作为包装纸的原料,与细菌纳米纤维素浸渍,制备新型抗菌纳米包装纸[53-54],并作为抗菌膜剂用于生物膜控制[55-57]。虽然,与抗生素和化学防腐剂相比,后生元有一定优势,但是后生元存在抑菌谱较窄、生产成本高等问题,成为其应用中不可忽略的因素[58]。
后生元的制备遵循灭活细菌、保留益生活性的原则。其制备方法包括高温、高压、酶处理、超声波、伽马辐射、溶剂萃取、超临界流体技术、喷雾干燥和冷冻干燥等。高温是制备后生元的常用方法,工业生产中一般采用高温灭活的方法,筛选的优质菌株经特殊培育及热封存技术处理,得到后生元制剂。使用高温来灭活细菌时,时间和温度取决于细菌自身的耐热性和试验所需益生物质的特性[59]。高温灭活细菌操作简单,但是对有益物质的活性有一定影响,因此研究人员开发出非热处理的方法。Li 等[60]将植物乳杆菌C88 先用溶菌酶在37 ℃孵育30 min,然后超声裂解,再离心去除细胞碎片,得到上清液作为植物乳杆菌的后生元制剂。活性物质的提取可根据其性质采用针对性的提取方法,比如有机溶剂萃取多糖或大分子蛋白质,超临界流体技术提取糖脂等[61]。益生菌发酵液经灭活细菌处理后通过喷雾干燥或冷冻干燥制成干粉,可以提高产品的流通性和方便性。鉴于制备方法的多样性,根据菌株特性和后生元健康用途,选择快速、可控、经济的制备方法。
后生元不是单一的化合物,是多种成分组成的混合物。虽然后生元被证明有多种功效,但对其发挥某种特定功效的活性成分进行解析并探讨其作用机制是后生元研究和开发应用需要解决的问题。后生元成分的鉴定方法复杂多样,目前常用的鉴定方法包括气相色谱法(gas chromatography,GC)、液相色谱法(liquid chromatography,LC)、气相色谱-三重四极杆串联质谱(gas chromatography-triple quadrupole tandem mass spectrometry,GC-MS/MS)、液相色谱-三重四极杆串联质谱(liquid chromatography-triple quadrupole tandem mass spectrometry,LC-MS/MS)、薄层色谱法(thin-layer chromatography,TLC)、核磁共振波谱学(nuclear magnetic resonance,NMR)、傅里叶变换红外光谱(Fourier transform infrared,FTIR)、分光光度法、扫描电子显微镜(scanning electron microscope,SEM)和原子力显微镜(atomic force microscopy,AFM)、拉曼光谱、基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption ionization time-of-flight mass spectrometry,MALDI-TOF MS)等。鉴定方法的选择要根据后生元的研究目标和所追求的表征类型(定性或定量)[62]。GC 及GC-MS/MS是短链脂肪酸、挥发性化合物(如双乙酰、乙酮和二甲基砜、2-丁酮)和有机化合物进行定量和定性分析最常用的方法,例如Patil 等[63]使用GC 验证后生元中是否存在短链脂肪酸。LC 以及LC-MS/MS 也是鉴定后生元化学成分的常用方法,其能够准确、系统、快速地进行鉴定。Gao 等[21]通过LC/MS-MS 分析,从鼠李糖乳杆菌GG 发酵上清液中鉴定了一种新的分泌蛋白(HM0539)。还有研究人员通过超高效液相色谱-高分辨质谱(ultra-high performance liquid chromatographyhigh resolution mass spectrum,UHPLC-HRMS)在嗜酸乳杆菌和格氏乳杆菌的发酵上清液中鉴定了97 种代谢物和71 种脂质。此外,Fuochi 等[64]使用核磁共振光谱检测和量化不同乳杆菌菌株产生的无细胞上清液的代谢物(如氨基酸、有机酸、单糖、酮和醇等)。MALDI-TOF 是鉴定后生元制剂中蛋白质成分的新型工具。TLC、FTIR、分光光度法均是快速的定性检测方法。拉曼光谱技术[65]能够对菌体成分进行检测,预测生物活性。扫描电子显微镜和原子力显微镜[66]主要用于表征大分子物质的理化性质。由于后生元成分的复杂性,因此鉴定方法通常是多种技术结合使用。
国际益生菌与益生元科学协会(International Symposium of the International Scientific Association of Probiotics and Prebiotics,ISAPP)关于后生元的正式声明,后生元的市场产品需满足以下条件:1)细胞微生物的分子表征(例如,完整的基因组序列),以精准鉴定和筛选安全隐患的潜在基因;2)详细说明灭活步骤和过程;3)确认已发生灭活;4)成分的详细说明;5)具有高质量的试验、对宿主产生健康益处的实际证据;(6)评估其制剂在目标宿主中预期用途和其安全性。以充分的科学研究和临床实验为支撑,后生元产品的商业化道路发展迅速[8]。罗伊氏乳杆菌DSM 1768 的灭活菌体能够有效治疗幽门螺旋杆菌(Helicobacter pylori,H.pylori),作用原理是灭活菌体与宿主胃中的幽门螺旋杆菌H.pylori 特异性结合,掩盖H.pylori 表面结构并形成灭活菌体与H.pylori 的结合物,使其无法黏附在胃黏膜上,进而被排出体外[67]。多项研究证明热灭活的植物乳杆菌L-137,包括灭活菌体及代谢产物具有调节免疫系统、维持肠道菌群平衡以及改善皮肤干燥等功能,产品已广泛应用到饮料、面包、糖果、拉面等食物中[68-69]。目前后生元的产业化应用情况见表2。
表2 后生元的产业化应用
Table 2 Industrial appication of postbiotics
后生元名称 后生元来源 功能 参考文献Kirin 乳酸乳球菌乳酸亚种JCM5805 灭活菌体及代谢产物 调节免疫系统 [70]Calpis 淀粉乳杆菌CP1563 的代谢产物 有助于减少腹部脂肪 [71]Hyalmoist 格氏乳杆菌N320 灭活菌体及代谢产物 促进人体产生透明质酸ALBEX 16 种乳酸菌代谢物 增强免疫力LAC-Shield 副干酪乳杆菌MCC1849 灭活菌体及代谢产物 增强免疫力 [36]Ganeden 凝结芽孢杆菌GBI-30,6086 灭活菌体 增强免疫力、调节肠胃、促进消化 [72]EpiCor 酿酒酵母灭活菌体及代谢产物 增强免疫力 [73]SymRebootTM L19 植物乳杆菌HEAL 19 灭活菌体 敏感皮肤护理Bilantera 副干酪乳杆菌、乳双歧杆菌、鼠李糖乳杆菌灭活菌体及复合发酵代谢物改善皮肤油腻、改善皮肤敏感降低炎症、降低色素沉积、减少皮肤粉刺Probio-MT 植物乳杆菌、乳酸乳球菌、乳双歧杆菌灭活菌体及复合发酵代谢物抑制口腔病原菌,用于口腔疾病的辅助治疗YDFF3 植物乳杆菌、乳酸乳球菌、乳双歧杆菌灭活菌体及复合发酵代谢物调节肠道菌群平衡、提高免疫力和辅助治疗肠胃疾病Health-A6 副干酪乳杆菌、乳双歧杆菌、鼠李糖乳杆菌、植物乳杆菌灭活菌体及复合发酵代谢物改善动物腹泻、增加肠道有益菌、抑制病原菌、提高动物的生长性能Probio-plantcare 植物乳杆菌、乳酸乳球菌、枯草芽孢杆菌灭活菌体及复合发酵代谢物改善土壤理化性质、促进植物生长和改善果实品质、提高植物抗逆性和抗病性益萃质 植物乳杆菌、唾液乳杆菌、长双歧杆菌、嗜酸乳杆菌的代谢产物调节免疫力、抗菌、抗氧化、抑制黑色素、改善代谢力Lacteol R Fort 嗜酸乳杆菌LB 的灭活菌体 治疗腹泻 [74]
2020 年8 月20 日,中国食品科学技术学会发布“益生菌科学研究十大热点”,“益生菌与后生元/类生元”位列其中,后生元首次入选[75],说明科研界对后生元有较大的期望。
作为一种新生事物,后生元在其研究及应用领域,仍然有很多需要解决的问题。例如,对后生元发挥某种特定功效的效应分子进行解析鉴定,并对其作用机制进行阐明;对后生元的功效评价及安全性尚需大量临床实验验证;法律法规及标准的滞后和消费者的观念一定程度上限制了后生元的商业化发展等。尽管如此,后生元的多功能性和安全性、稳定性等优势,使其在食品、保健品、医疗、化妆品、饲料等诸多领域有巨大的市场潜力。未来,“后生元产品”、“后生元疗法”或成为大众的“优选”。
[1] HOTEI A C P,CORDOBA A.Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria[J].Prevention,2001,5:1-10.
[2] GEORGE KERRY R, PATRA J K, GOUDA S, et al. Benefaction of probiotics for human health: A review[J]. Journal of Food and Drug Analysis,2018,26(3):927-939.
[3] BRUGMAN S,IKEDA-OHTSUBO W,BRABER S,et al.A comparative review on microbiota manipulation: Lessons from fish, plants,livestock,and human research[J].Frontiers in Nutrition,2018,5:80.
[4] TEAME T,WANG A R,XIE M X,et al.Paraprobiotics and postbiotics of probiotic lactobacilli,their positive effects on the host and action mechanisms:A review[J].Frontiers in Nutrition,2020,7:570344.
[5] CUEVAS-GONZÁLEZ P F, LICEAGA A M, AGUILAR-TOALÁ J E. Postbiotics and paraprobiotics: From concepts to applications[J].Food Research International,2020,136:109502.
[6] HERNÁNDEZ-GRANADOS M J,FRANCO-ROBLES E.Postbiotics in human health: Possible new functional ingredients?[J]. Food Research International,2020,137:109660.
[7] TSILINGIRI K,BARBOSA T,PENNA G,et al.Probiotic and postbiotic activity in health and disease:Comparison on a novel polarised ex-vivo organ culture model[J].Gut,2012,61(7):1007-1015.
[8] SALMINEN S, COLLADO M C, ENDO A, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics[J]. Nature Reviews Gastroenterology&Hepatology,2021,18(9):649-667.
[9] MORADI M, MOLAEI R, GUIMARÃES J T. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria[J].Enzyme and Microbial Technology,2021,143:109722.
[10] 李杨,周湘人,郭薇丹,等.后生元的研究进展[J].食品安全质量检测学报,2021,12(16):6558-6564.LI Yang,ZHOU Xiangren,GUO Weidan,et al.Research progress of postbiotics[J].Journal of Food Safety&Quality,2021,12(16):6558-6564.
[11] WEGH C A M, GEERLINGS S Y, KNOL J, et al. Postbiotics and their potential applications in early life nutrition and beyond[J].International Journal of Molecular Sciences,2019,20(19):4673.
[12] SUGAWARA T,SAWADA D,ISHIDA Y,et al.Regulatory effect of paraprobiotic Lactobacillus gasseri CP2305 on gut environment and function[J]. Microbial Ecology in Health and Disease, 2016, 27(1):30259.
[13] KIMOTO-NIRA H,MIZUMACHI K,OKAMOTO T,et al.Influence of long-term consumption of a Lactococcus lactis strain on the intestinal immunity and intestinal flora of the senescence-accelerated mouse[J].The British Journal of Nutrition,2009,102(2):181-185.
[14] GAO X Y,WANG F,ZHAO P,et al.Effect of heat-killed Streptococcus thermophilus on type 2 diabetes rats[J].PeerJ,2019,7:e7117.
[15] IZUDDIN W I,LOH T C,SAMSUDIN A A,et al.Effects of postbiotic supplementation on growth performance, ruminal fermentation and microbial profile,blood metabolite and GHR, IGF-1 and MCT-1 gene expression in post-weaning lambs[J]. BMC Veterinary Research,2019,15(1):315.
[16] KHODAII Z,GHADERIAN S M H,NATANZI M M.Probiotic bacteria and their supernatants protect enterocyte cell lines from enteroinvasive Escherichia coli(EIEC)invasion[J].International Journal of Molecular and Cellular Medicine,2017,6(3):183-189.
[17] ALBILLOS A,DE GOTTARDI A,RESCIGNO M.The gut-liver axis in liver disease:Pathophysiological basis for therapy[J].Journal of Hepatology,2020,72(3):558-577.
[18] LIU Y,WANG J Q,WU C X.Microbiota and tuberculosis:A potential role of probiotics,and postbiotics[J].Frontiers in Nutrition,2021,8:626254.
[19] MORNIROLI D, VIZZARI G, CONSALES A, et al. Postbiotic supplementation for children and newborn's health[J]. Nutrients, 2021,13(3):781.
[20] SHARKEY K A,BECK P L,MCKAY D M.Neuroimmunophysiology of the gut:Advances and emerging concepts focusing on the epithelium[J].Nature Reviews Gastroenterology&Hepatology,2018,15(12):765-784.
[21] GAO J,LI Y B,WAN Y,et al.A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function[J].Frontiers in Microbiology,2019,10:477.
[22] DENG Y L,MCDONALD O G,MEANS A L,et al.Exposure to p40 in early life prevents intestinal inflammation in adulthood through inducing a long-lasting epigenetic imprint on TGFβ[J]. Cellular and Molecular Gastroenterology and Hepatology,2021,11(5):1327-1345.
[23] YAN F, LIU L P, DEMPSEY P J, et al. A Lactobacillus rhamnosus GG-derived soluble protein,p40,stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor[J]. Journal of Biological Chemistry, 2013, 288(42): 30742-30751.
[24] SHEN X,LIU L P,PEEK R M,et al.Supplementation of p40,a Lactobacillus rhamnosus GG-derived protein, in early life promotes epidermal growth factor receptor-dependent intestinal development and long-term health outcomes[J].Mucosal Immunology,2018,11(5):1316-1328.
[25] UENO N,FUJIYA M,SEGAWA S,et al.Heat-killed body of Lactobacillus brevis SBC8803 ameliorates intestinal injury in a murine model of colitis by enhancing the intestinal barrier function[J]. Inflammatory Bowel Diseases,2011,17(11):2235-2250.
[26] AGGELETOPOULOU I, KONSTANTAKIS C, ASSIMAKOPOULOS S F,et al.The role of the gut microbiota in the treatment of inflammatory bowel diseases[J].Microbial Pathogenesis,2019,137:103774.
[27] MAYORGAS A,DOTTI I,SALAS A.Microbial metabolites,postbiotics,and intestinal epithelial function[J].Molecular Nutrition&Food Research,2021,65(5):2000188.
[28] WIERTSEMA S P, VAN BERGENHENEGOUWEN J, GARSSEN J,et al. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies[J].Nutrients,2021,13(3):886.
[29] SALVA S,TISCORNIA I,GUTIÉRREZ F,et al.Lactobacillus rhamnosus postbiotic-induced immunomodulation as safer alternative to the use of live bacteria[J].Cytokine,2021,146:155631.
[30] MARTORELL P,ALVAREZ B,LLOPIS S,et al.Heat-treated Bifidobacterium longum CECT-7347: A whole-cell postbiotic with antioxidant, anti-inflammatory, and gut-barrier protection properties[J].Antioxidants(Basel,Switzerland),2021,10(4):536.
[31]PAVELJŠEK D,IVICˇAK-KOCJAN K,TREVEN P,et al.Distinctive probiotic features share common TLR2-dependent signalling in intestinal epithelial cells[J]. Cellular Microbiology, 2021, 23(1):e13264.
[32] DE MARCO S,SICHETTI M,MURADYAN D,et al.Probiotic cellfree supernatants exhibited anti-inflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with LPS[J].Evidence-Based Complementary and Alternative Medicine,2018,2018:1756308.
[33] MIYAZAWA K, HE F, KAWASE M, et al. Enhancement of immunoregulatory effects of Lactobacillus gasseri TMC0356 by heat treatment and culture medium[J]. Letters in Applied Microbiology,2011,53(2):210-216.
[34] COMPARE D, ROCCO A, COCCOLI P, et al. Lactobacillus casei DG and its postbiotic reduce the inflammatory mucosal response:An ex-vivo organ culture model of post-infectious irritable bowel syndrome[J].BMC Gastroenterology,2017,17(1):53.
[35] ISHIKAWA H, KUTSUKAKE E, FUKUI T, et al. Oral administration of heat-killed Lactobacillus plantarum strain b240 protected mice against Salmonella enterica serovar typhimurium[J].Bioscience,Biotechnology,and Biochemistry,2010,74(7):1338-1342.
[36] ARAI S,IWABUCHI N,TAKAHASHI S,et al.Orally administered heat-killed Lactobacillus paracasei MCC1849 enhances antigenspecific IgA secretion and induces follicular helper T cells in mice[J].PLoS One,2018,13(6):e0199018.
[37] TODOROV S D, TAGG J R, IVANOVA I V. Could probiotics and postbiotics function as“silver bullet”in the post-COVID-19 era?[J].Probiotics and Antimicrobial Proteins,2021,13(6):1499-1507.
[38] RATHER I A, CHOI S B, KAMLI M R, et al. Potential adjuvant therapeutic effect of Lactobacillus plantarum probio-88 postbiotics against SARS-COV-2[J].Vaccines,2021,9(10):1067.
[39] PELUZIO M D C G, MARTINEZ J A, MILAGRO F I. Postbiotics:Metabolites and mechanisms involved in microbiota-host interactions[J].Trends in Food Science&Technology,2021,108:11-26.
[40] LI H Y, ZHOU D D, GAN R Y, et al. Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota:A narrative review[J].Nutrients,2021,13(9):3211.
[41] LEE J,PARK S,OH N,et al.Oral intake of Lactobacillus plantarum L-14 extract alleviates TLR2-and AMPK-mediated obesity-associated disorders in high-fat-diet-induced obese C57BL/6J mice[J].Cell Proliferation,2021,54(6):e13039.
[42] MONTAZERI-NAJAFABADY N, GHASEMI Y, DABBAGHMANESH M H,et al.Exploring the bone sparing effects of postbiotics in the post-menopausal rat model[J]. BMC Complementary Medicine and Therapies,2021,21(1):155.
[43] WARDA A K, REA K, FITZGERALD P, et al. Heat-killed lactobacilli alter both microbiota composition and behaviour[J]. Behavioural Brain Research,2019,362:213-223.
[44] HUMAM A M,LOH T C,FOO H L,et al.Supplementation of postbiotic RI11 improves antioxidant enzyme activity, upregulated gut barrier genes, and reduced cytokine, acute phase protein, and heat shock protein 70 gene expression levels in heat-stressed broilers[J].Poultry Science,2021,100(3):100908.
[45] DÍAZ CANO J V,ARGENTE M J,GARCÍA M L.Effect of postbiotic based on lactic acid bacteria on semen quality and health of male rabbits[J].Animals:an Open Access Journal from MDPI,2021,11(4):1007.
[46] 童雨翠,张静,陈霈瑶,等.后生素: 一类具有潜力的新型饲料添加剂[J].饲料工业,2021,42(18):12-17.TONG Yucui,ZHANG Jing,CHEN Peiyao,et al.Postbiotics:A novel and promising feed additives[J].Feed Industry,2021,42(18):12-17.
[47] Z˙ÓŁKIEWICZ J,MARZEC A,RUSZCZYNSKI M,et al.Postbiotics-A step beyond pre-and probiotics[J].Nutrients,2020,12(8):2189.
[48] AGUILAR-TOALÁ J E,GARCIA-VARELA R,GARCIA H S,et al.Postbiotics: An evolving term within the functional foods field[J].Trends in Food Science&Technology,2018,75:105-114.
[49] I˙NCILI G K,KARATEPE P,AKGÖL M,et al.Characterization of Pediococcus acidilactici postbiotic and impact of postbiotic-fortified chitosan coating on the microbial and chemical quality of chicken breast fillets[J].International Journal of Biological Macromolecules,2021,184:429-437.
[50] HOSSAIN M I,MIZAN M F R,ROY P K, et al. Listeria monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2[J].Food Research International,2021,148:110595.
[51] BARROS S,ROCHA C,DE MOURA M S B,et al.Potential beneficial effects of kefir and its postbiotic,kefiran,on child food allergy[J].Food&Function,2021,12(9):3770-3786.
[52] HOMAYOUNI RAD A,AGHEBATI MALEKI L,SAMADI KAFIL H,et al.Postbiotics:A novel strategy in food allergy treatment[J].Critical Reviews in Food Science and Nutrition,2021,61(3):492-499.
[53] SHAFIPOUR YORDSHAHI A,MORADI M,TAJIK H,et al.Design and preparation of antimicrobial meat wrapping nanopaper with bacterial cellulose and postbiotics of lactic acid bacteria[J].International Journal of Food Microbiology,2020,321:108561.
[54] RASOULI Y,MORADI M,TAJIK H,et al.Fabrication of anti-Listeria film based on bacterial cellulose and Lactobacillus sakei-derived bioactive metabolites; application in meat packaging[J]. Food Bioscience,2021,42:101218.
[55] ROSSONI R D, DE BARROS P P, MENDONÇA I D C, et al. The postbiotic activity of Lactobacillus paracasei 28.4 against Candida auris[J].Frontiers in Cellular and Infection Microbiology, 2020, 10:397.
[56] MORADI M,MARDANI K,TAJIK H.Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food models[J].LWT-Food Science and Technology,2019,111:457-464.
[57] SHARAHI J Y, AZIMI T, SHARIATI A, et al. Advanced strategies for combating bacterial biofilms[J]. Journal of Cellular Physiology,2019,234(9):14689-14708.
[58] MORADI M,KOUSHEH S A,ALMASI H,et al.Postbiotics produced by lactic acid bacteria:The next frontier in food safety[J].Comprehensive Reviews in Food Science and Food Safety, 2020, 19(6):3390-3415.
[59] THORAKKATTU P,KHANASHYAM A C,SHAH K, et al. Postbiotics:Current Trends in Food and Pharmaceutical Industry[J].Foods,2022,11(19):3094.
[60] LI S Y, ZHAO Y J, ZHANG L, et al. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods[J].Food Chemistry,2012,135(3):1914-1919.
[61] RAKHUBA D,NOVIK G,DEY E S.Application of supercritical carbon dioxide(scCO2)for the extraction of glycolipids from Lactobacillus plantarum B-01[J]. The Journal of Supercritical Fluids, 2009,49(1):45-51.
[62] OZMA M A,ABBASI A,AKRAMI S,et al.Postbiotics as the key mediators of the gut microbiota-host interactions[J]. Infez Med, 2022,30(2):180-193.
[63] PATIL S,SAWANT S,HAUFF K,et al.Validated postbiotic screening confirms presence of physiologically-active metabolites,such as short-chain fatty acids,amino acids and vitamins in hylak R forte[J].Probiotics and Antimicrobial Proteins,2019,11(4):1124-1131.
[64] FUOCHI V,CONIGLIO M A,LAGHI L,et al.Metabolic characterization of supernatants produced by Lactobacillus spp. with in vitro anti-Legionella activity[J].Frontiers in Microbiology,2019,10:1403.
[65] AGUILAR-TOALÁ J E,HALL F G,URBIZO-REYES U C,et al.In silico prediction and in vitro assessment of multifunctional properties of postbiotics obtained from two probiotic bacteria[J].Probiotics and Antimicrobial Proteins,2020,12(2):608-622.
[66] LIU Z Q,ZHANG Z H,QIU L,et al.Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04[J].Journal of Dairy Science,2017,100(9):6895-6905.
[67] BUCKLEY M,LACEY S,DOOLAN A,et al.The effect of Lactobacillus reuteri supplementation in Helicobacter pylori infection:A placebo-controlled,single-blind study[J].BMC Nutrition,2018,4:48.
[68] YOSHITAKE R, NAKAI H, EBINA M, et al. Beneficial effect of heat-killed Lactiplantibacillus plantarum L-137 on skin functions in healthy participants:A randomized,placebo-controlled,doubleblind study[J].Frontiers in Medicine,2022,9:912280.
[69] NAKAI H,MUROSAKI S,YAMAMOTO Y,et al.Safety and efficacy of using heat-killed Lactobacillus plantarum L-137: High-dose and long-term use effects on immune-related safety and intestinal bacterial flora[J].Journal of Immunotoxicology,2021,18(1):127-135.
[70] SHIBATA T, KANAYAMA M, HAIDA M, et al. Lactococcus lactis JCM5805 activates anti-viral immunity and reduces symptoms of common cold and influenza in healthy adults in a randomized controlled trial[J].Journal of Functional Foods,2016,24:492-500.
[71] SUGAWARA T,SAWADA D,YANAGIHARA S,et al.Daily intake of paraprobiotic Lactobacillus amylovorus CP1563 improves preobese conditions and affects the gut microbial community in healthy pre-obese subjects: A double-blind, randomized, placebo-controlled study[J].Microorganisms,2020,8(2):304.
[72] KUMAR V V,SUDHA K M,BENNUR S,et al.A prospective, randomized, open-label, placebo-controlled comparative study of Bacillus coagulans GBI-30,6086 with digestive enzymes in improving indigestion in geriatric population[J].Journal of Family Medicine and Primary Care,2020,9(2):1108-1112.
[73] EVANS M, REEVES S, ROBINSON L E. A dried yeast fermentate prevents and reduces inflammation in two separate experimental immune models[J].Evidence-Based Complementary and Alternative Medicine,2012,2012:973041.
[74] MARÍA REMES TROCHE J,COSS ADAME E,ÁNGEL VALDOVINOS DÍAZ M, et al. Lactobacillus acidophilus LB: A useful pharmabiotic for the treatment of digestive disorders[J].Therapeutic Advances in Gastroenterology,2020,13:1-15.
[75] 中国食品科学技术学会益生菌分会.益生菌科学研究十大热点及行业发展建议[J].中国食品学报,2020,20(9):337-344.Probiotics Society of the Chinese Institute of Food Science and Technology.The top 10 probiotics trends and proposals for industry development[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(9):337-344.
Function and Application of Postbiotics:A Review
瞿茜楠,兰冬雪,黄天,等.后生元的功能及应用研究进展[J].食品研究与开发,2023,44(7):6-13.
QU Xinan,LAN Dongxue,HUANG Tian,et al. Function and Application of Postbiotics:A Review[J]. Food Research and Development,2023,44(7):6-13.