真空冷冻干燥(vacuum freeze drying,VFD)技术在19世纪初期出现,1813年科学家沃拉斯顿研究发现产品中水分经低温冷冻预处理,水分冻结后在负压条件下可快速升华,将产品中的水分排出达到干燥[1]。真空冷冻干燥技术可应用于热敏性物料,热处理会破坏产品中活性营养成分,而真空冷冻干燥技术能更好地保留产品中营养成分并避免热处理导致的褐变现象[2]。最初,真空冷冻干燥技术主要应用于疫苗、血清等产品的生产中,这些产品对生产技术要求相对较高,随着真空冷冻干燥技术的发展,该技术逐渐应用于生物制品、中药材和食品等领域[3]。
真空冷冻干燥技术应用于食品生产中能够保留食品原有的色、香、味。真空冷冻干燥对食品内部组织结构破坏较轻,干燥后的产品复水性好,复水后口感接近于新鲜产品[4]。经真空冷冻干燥处理后的产品质量更轻,便于储藏运输。但冻干产品过程时间长、能耗大,通过预处理可减少产品中水分含量,从而缩短真空冷冻干燥时间、降低能耗,节约生产成本符合低碳生产的理念[5]。部分学者对真空冷冻干燥过程中预处理方法进行研究,实现了缩短冻干时间、提高生产效率,本文总结真空冷冻干燥加工方式具备的优点并对未来发展方向进行展望。
目前常用的干燥方式包括自然干燥(natural drying,ND)、热风干燥(hot air drying,HAD)、真空干燥(vacuum drying,VD)、微波干燥(microwave drying,MD)和远红外干燥(far infrared drying,FID),将VFD 与以上干燥方式进行比较。VFD 通过将果蔬预冻处理,水分完全冻结后在真空负压条件下升温,果蔬中水分直接升华达到干燥[6]。VFD 包含2 个阶段(升华干燥阶段与解析干燥阶段),升华干燥时果蔬表层水分先升华形成干燥层,内部水蒸气在热量作用下经干燥层升华扩散至外界,干燥层逐渐向内部扩展,组织形成多孔结构,利于果蔬内部水蒸气升华,水蒸气在冷凝管上凝结成霜,升华过程伴随着质量与热量的转移(如图1所示);解析干燥为升华干燥完成后,果蔬内部的多孔结构残留的结合水在加热温度较高条件下,解析形成液态自由水,高温时以水蒸气形式经过多孔结构的干燥层扩散至物料外,解析干燥结束后果蔬中水分应控制在合理的范围内[7]。
图1 真空冷冻干燥升华干燥过程
Fig.1 Vacuum-freeze-drying and sublimation-drying process
自然干燥通过太阳热辐射或热空气流通使物料中水分蒸发达到干燥,主要分为日晒干燥(sun drying,SD)和阴凉干燥(cool drying,CD)。SD 利用太阳热辐射将物料干燥,CD 通过空气流动加快水分蒸发达到干燥。ND 过程中热量较低,因此干燥时间较长并且对产品品质影响大。Xia 等[8]对牛蒡阴凉干燥(CD)、日晒干燥(SD)和真空冷冻干燥(VFD)后分析色度值,VFD 牛蒡亮度(L*)值最接近新鲜牛蒡。VFD 在提升色泽方面具有较大的优势。Zhang 等[9]对ND 与VFD 香菇中有机酸、鲜味氨基酸含量进行分析,VFD 香菇中抗坏血酸、苹果酸和反丁烯二酸含量明显高于ND。香菇经ND后,呈鲜味氨基酸含量为2.86 mg/g,而VFD 后含量为3.97 mg/g。VFD 相比ND 可明显缩短干燥时间,减轻褐变程度,并可以更好地保留VC、有机酸和氨基酸等成分。
HAD 是通过热泵干燥箱产生热量,使果蔬中水分蒸发达到干燥,对果蔬内部组织结构、色泽和营养成分影响较大。Zhang 等[10]通过HAD 与VFD 猕猴桃分析干燥后品质、微观结构及营养成分,VFD 后亮度值更接近新鲜猕猴桃。HAD 后抗坏血酸与总黄酮含量分别为101.51 mg/100 g、0.76 mg/g,VFD 则分别为234.75 mg/100 g、1.56 mg/g。VFD 猕猴桃组织结构疏松多孔,利于内部水分扩散,HAD 组织结构塌陷,内层的水分无法扩散导致含水量较高。Kumar 等[11]通过HAD 与VFD对柑橘进行加工,经测定VFD 柑橘中橙皮苷、异苦参素和地奥司明保留率高,柑橘中DPPH 自由基清除能力、ABTS+自由基清除能力以及FRAD(铁离子还原能力)较强。Bai 等[12]通过HAD 与VFD 蛋黄,分析不同干燥方法对乳化能力的影响,结果表明VFD 蛋黄卵磷脂乳化能力更高,乳化能力与卵磷脂原有的结构组成有关。HAD 对组织结构和色泽影响较严重,VFD 使果蔬组织疏松多孔,干制后的果蔬复水率更高口感更好。
VD 过程中果蔬在真空负压条件下,温度升高至50 ℃以上。在真空高温环境下样品中水分蒸发达到干燥,VD 时水分以蒸发方式扩散。Charles 等[13]通过VD与VFD 食用海藻分析酚类抗氧化能力,以DPPH 法和ABTS 法测定干燥海藻后抗氧化活性的差异,VD 海藻DPPH 自由基清除能力、ABTS+自由基清除能力为34%与42%,VFD 海藻则为41%与49%,VFD 海藻对酚类抗氧化活性影响更小。Michlska 等[14]将VD 与VFD 应用于北美沙果果渣干燥中,测定干燥后果渣中多酚、羟甲基糠醛(hydroxymethylfurfural,HMF)和花青素的含量,VD 过程中加热温度分别设置60 ℃与90 ℃。VFD沙果果渣多酚、花青素含量为22.70、2.12 g/100 g,60 ℃VD 沙果果渣二者含量为15.88、1.75 g/100 g,90 ℃时分别为18.64、1.80 g/100 g。多酚与花青素均有抗氧化的作用,VFD 可更好保留沙果中抗氧化活性成分。VD时果蔬中水分蒸发导致营养成分流失,VFD 时水分升华扩散,水分子较小,跟随水分子扩散的营养物质较少,可保留更多营养物质。
MD 通过短波高频微波电场使果蔬中水分子沿微波传播方向发生极化并整齐排列,水分子随着高频交流电场进行快速旋转并产生激烈的碰撞和摩擦,整个过程将微波能转化为水分子运动的动能并产生热量,使果蔬内部温度升高将水分蒸发达到干燥[15]。Cao 等[16]在罗非鱼鱼片加工中使用VFD 与MD,结果显示VFD鱼片次黄嘌呤核苷酸含量达71.83 μmol/g,MD 后IMP含量为43.57 μmol/g,次黄嘌呤核苷酸越高鱼片的鲜味越浓,VFD 可缓解核苷酸类化合物降解,使干燥后鱼片营养更丰富,这在蛋白质含量上也有体现。VFD鱼片蛋白质含量高于MD 鱼片,蛋白质是鱼肉中主要的营养物质,VFD 可缓解蛋白质水解。曾凤泽等[17]通过VFD 与MD 红枣,测定红枣中总酚、总黄酮含量、DPPH自由基清除能力和铁离子还原能力,结果表明VFD 红枣中总酚、总黄酮保留率更高。VFD 红枣DPPH 自由基清除能力与铁离子还原能力为8.4 mmol/100 g、734.2 mg/100 g,MD 分别为5.9 mmol/100 g、628.4 mg/100 g。VFD 对红枣中抗氧化活性成分有更好的保护作用。VFD 过程产生的热量低于MD,对果蔬中热敏感的营养成分破坏更少。
FID 通过产生电磁波传播到果蔬中,当电磁波振动频率与果蔬中水分子运动频率相同时,水分子发生激烈的振动摩擦,果蔬内部温度升高热量由内向外扩散,水分从内向外蒸发达到干燥[18]。FID 对蛋白质、花青素有较大的影响,VFD 可提升二者的保留率[19]。杜腾飞等[20]将两种技术应用于柠檬片干燥,VFD 柠檬片VC保留率为65.14%,FID 仅为49.92%,VC 是柠檬中主要的维生素。张苗青等[21]将FID 与VFD 应用于杏鲍菇干制的过程中,对干燥后杏鲍菇中超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和过氧化物酶(peroxidase,POD)活性进行测定,FID 杏鲍菇中SOD、CAT 和POD 的活性为0.09、8.0 U/g 和7.0 U/g,VFD 后分别为0.32、12.0 U/g 和41.0 U/g,VFD可保持3 种酶较高的活力,有效降低杏鲍菇中过氧化物的积累。经VFD 杏鲍菇组织疏松、孔隙较大,结构排列整齐。经FID 杏鲍菇结构杂乱、分布不均匀,VFD可更好地保护细胞纤维结构。FID 通过电磁波使果蔬中水分子振动摩擦产生热量,水分经加热后蒸发扩散至外界达到干燥,破坏果蔬组织结构,降低干燥后产品营养价值。
传统的VFD 技术冻干时间较长,能耗高。Nguyen等[22]通过不同方式干燥胡萝卜并比较能耗,干燥方式主要有热风干燥、真空干燥、微波干燥和真空冷冻干燥,试验结果显示,微波干燥的能耗最低,真空冷冻干燥相比真空干燥(VD)、热风干燥(HAD)和微波干燥(MD)的能耗高几十倍,能耗过高导致生产成本增加,因此,可通过预处理的加工方式缩短VFD 时间,降低VFD 能耗。
2.1.1 糖溶液渗透
果蔬在一定浓度的糖溶液中,水分向高渗透压糖溶液中扩散,降低果蔬含水量,缩短VFD 时间,经糖液渗透的果蔬可减轻干燥后褐变情况[23]。Ansar 等[24]通过不同浓度麦芽糊精预处理百香果汁再进行VFD,测定VFD 后颗粒粒径和含水量,粒径与麦芽糊精浓度呈正相关,而含水量与麦芽糊精浓度呈负相关,麦芽糊精浓度决定渗透压,渗透压越高水分扩散的速度越快。Lazou 等[25]以异麦芽糖、甜菊糖苷和低聚果糖对番茄进行渗透预处理,再通过VFD 降低番茄中水分活度。不同浓度、不同类型的糖液渗透对VFD 产品感官、营养成分以及干燥速率有一定的影响。小分子糖可提高果蔬中水分扩散速率,而低聚糖渗透可增加冻干产品的营养价值[26]。
2.1.2 酶渗透
果蔬细胞的主要成分为纤维素,可通过酶预处理,主要包括果胶酶、纤维素酶、半纤维素酶,酶将果蔬细胞壁水解形成微孔通道使水分扩散速度加快,缩短冻干时间,酶预处理对产品口感的影响更小[27]。Kucner 等[28]对蓝莓进行预处理,一种为果胶酶渗透后真空条件下脱水,另一种不添加酶制剂,直接在真空条件下脱水。结果显示,经酶制剂预处理的蓝莓干物质含量显著提升,果胶酶将果胶水解增加蓝莓细胞壁的通透性,提升VFD 效率。Shi 等[29]对香菇片进行超声渗透预处理和纤维素酶预处理,经低场核磁共振波谱分析纤维素酶处理的香菇片水分流动性更高,扩散速率更快,酶处理后的产品组织更疏松。酶可以水解植物组织细胞壁,增加细胞壁通透性提高水分扩散速率,缩短VFD时间。
2.1.3 NaCl 溶液渗透
果蔬在NaCl 溶液中细胞内外产生渗透压加快水分扩散,NaCl 溶液的饱和浓度为36%,因此NaCl 溶液适用于含水量较高的果蔬。NaCl 溶液渗透脱水效率与渗透液浓度不成正比关系,只在适宜的渗透液浓度下脱水效率最高。Kowalski 等[30]分析不同浓度的NaCl 溶液经不同渗透时间对红甜菜根营养成分保留率、水分活度和复水性影响,低浓度的NaCl 溶液可提高甜菜根中的甜菜碱保留率。渗透时间长导致NaCl 沉淀在果蔬表面,沉淀堵塞微孔使水分无法进入果蔬内导致复水率降低。NaCl 溶液浓度过高将影响VFD 后果蔬的品质和口感。NaCl 溶液渗透在适宜的浓度和时间下才能达到最佳效果,并且对于不同的果蔬NaCl 溶液渗透浓度和时间均不相同。
强电场下产生较高频率的脉冲作用于细胞膜内外两侧的异电荷,堆积在细胞膜内外两侧的异电荷相互吸引,强电场、高脉冲环境下细胞膜内外异电荷密度逐渐增大,吸引力增强,最终导致细胞膜挤压破裂[31]。细胞膜破裂通透性增加,细胞内水分扩散至细胞外,PEF 预处理后经VFD 可明显降低果蔬中水分。Zongo 等[32]使用PEF 预处理芒果,经微观结构分析得出PEF 预处理后细胞壁和细胞膜基本保持原有的结构,PEF 使细胞膜上产生微小的电穿孔,水分经微孔扩散至细胞外对细胞组织结构破坏较轻。Wiktor 等[33]通过PEF 预处理苹果后进行干燥,预处理使苹果干的复水率提高。脉冲电场预处理可消灭果蔬中微生物[34],对干燥食品起到防腐的效果。PEF 可缩短VFD 时间、降低能耗,对细胞组织结构影响较小。
超声波(ultrasound,US)使果蔬内部组织产生压缩与解压,在超声波冲击下果蔬表面产生微泡,在一定频率的超声波下气体微泡围绕果蔬循环振荡,微泡的运动加快果蔬中水分的流动,当微泡数量足够多引发细胞破裂,细胞中水分流至细胞外降低含水量[35]。US过程中结合溶液渗透加快水分排出,缩短VFD 时间。草莓在VFD 前经10%蔗糖溶液超声渗透预处理,超声预处理冻干草莓中花青素含量和抗氧化能力高于未经超声预处理[36]。Fong-In 等[37]使用US 渗透预处理荔枝减少含水量同时降低好氧微生物的存活率,超声预处理同样具有灭活杀菌的作用。
高温漂烫后再VFD 使果蔬中酶失活抑制酶促褐变反应,减轻果蔬的褐变程度[38]。经漂烫预处理后VFD可减轻果蔬的收缩程度[39]。Bikila 等[40]对根茎作物漂烫预处理后干燥,产品中直链淀粉保留量较高,直链淀粉证明可以预防肥胖,降低Ⅱ型糖尿病的发作风险。漂烫预处理过程中添加植物天然提取物能够降低干燥后果蔬的皱缩程度,提高营养成分的保留率[41]。漂烫预处理导致水溶性营养成分保留率下降,而蒸汽漂烫可减少水溶性营养成分损失[42]。漂烫预处理降低果蔬中多酚氧化酶和过氧化物酶的活性,预处理后多酚化合物保留率升高,可提升抗炎、抗氧化的能力[43]。漂烫预处理应用于VFD 后改善果蔬色泽,多酚氧化酶和过氧化物酶在高温下活性降低减轻酶促褐变的发生,多酚化合物保留率提升。
超高压(ultra-high pressure,UHP)过程中流体受高压压迫,经过微米级的高压阀门流向果蔬,阀门附近产生湍流,冲击果蔬,细胞受到冲击发生破裂增加组织孔隙度,VFD 时水分升华速度加快,缩短VFD 时间并提升口感[44]。Zhang 等[45]将UHP 预处理草莓片再VFD 使草莓中酯类、葡萄糖和果糖的相对含量明显增加,冻干草莓片的果香味和甜度增强而酸度降低。UHP渗透预处理过程中压力与干燥效果呈正相关[46]。UHP预处理抑制蛋白质的过敏性,使过敏性蛋白质溶解并释放至细胞外[47]。Yuan 等[48]通过UHP 预处理VFD 果蔬,UHP 预处理后冻干的果蔬中挥发性成分保留率更高,原因为UHP 预处理改变酶的化学键,导致芳香化合物酶原结构发生改变,挥发性降低。经UHP 预处理VFD 果蔬的组织孔隙度增加,加快组织中水分升华,缩短VFD 时间。UHP 预处理为非热处理方法,可以避免漂烫、蒸汽漂烫预处理导致的果蔬组织塌陷,同时具有灭菌的作用以延长冻干后食品保质期。
真空冷冻干燥的预处理方式还包括通过真空预处理加快果蔬中水分蒸发,缩短预处理后的冻干时间[49]。Song 等[50]通过蒸汽爆破预处理杭白菊后提高多酚化合物的保留率同时降低含水量,缩短预处理后干燥时间。Xu 等[51]对黄秋葵冻融预处理再冻干,营养成分的保留率高并明显缩短VFD 时间。Zhu 等[52]对蓝莓预处理的研究得到相同验证。真空预处理、蒸汽爆破和冻融预处理可增加果蔬细胞的孔径,加快细胞内水分的扩散,在真空冷冻干燥时细胞中的水分可快速升华,缩短冻干过程的时间。
随着社会发展,人们对食品的各方面要求逐渐提升,满足色、香、味的同时更关注食品的营养价值。真空冷冻干燥可最大程度保留干燥后食品的色泽和营养价值,水分在低温条件下升华达到干燥,相比于其他干燥方法具有独特的优势。真空冷冻干燥可以明显提升食品的品质,但是真空冷冻干燥能源消耗相对较高,针对不同的预处理方式缩短真空冷冻干燥时间降低能耗,并提升干燥食品品质,具有重要的现实意义。预处理缩短干燥时间的同时还可改善口感,使干燥后的食品具有独特的风味。将营养补充剂渗透预处理后真空冷冻干燥弥补干燥过程中营养元素的流失,提升食品的营养价值,可作为未来干燥食品的研究方向。真空冷冻干燥联用其他干燥技术可以降低生产能耗、压缩生产成本,为将果蔬深加工可持续发展作为未来真空冷冻干燥技术的发展方向提供参考。
[1]徐磊.真空冷冻干燥技术在云南三种道地药材新型饮片加工中的应用研究[D].昆明:昆明理工大学,2018.XU Lei.Investigation and application of vacuum-freeze drying technology on the processing of new decoction pieces of three Yunnan's genuine medicinal materials[D].Kunming:Kunming University of Science and Technology,2018.
[2]FERENCZI S,CZUKOR B,CSERHALMI Z.Evaluation of microwave vacuum drying combined with hot-air drying and compared with freeze-and hot-air drying by the quality of the dried apple product[J].Chemical Engineering,2014,58(2):113-114.
[3]VALENTE S,CIAVARELLA C,ASTOLFI G,et al.Impact of freezedrying on cord blood(CB),serum(S),and platelet-rich plasma(CBPRP) preparations on growth factor content and in vitro cell wound healing[J].Molecular Sciences,2022,23(18):1-11.
[4]LINA HU,JINFENG BI,XIN JIN,et al.Study on the rehydration quality improvement of shiitake mushroom by combined drying methods[J].Foods,2021,10:17-19.
[5]周頔,王海鸥,孙艳辉,等.不同前处理和冻结方式对苹果片真空冷冻干燥效率及干制品品质的影响[J].现代食品科技,2016,32(12):218-224.ZHOU Di,WANG Hai'ou,SUN Yanhui,et al.Effects of re-processing and freezing methods on the efficiency of vacuum freeze-drying and quality of freeze-dried apple slices[J].Modern Food Science and Technology,2016,32(12):218-224.
[6]陈柏楠,杨豪,包韫辉,等.不同工艺真空冷冻干燥桂花的品质比较分析[J].现代食品科技,2021,37(2):205-212.CHEN Bainan,YANG Hao,BAO Yunhui,et al.Comparative analysis of different vacuum freeze drying processes on quality of Osmanthus fragrans[J].Modern Food Science and Technology,2021,37(2):205-212.
[7]薛海,贺阳,孟祥敏,等.马铃薯雪花全粉真空冷冻干燥制备工艺及其性质[J].食品工业,2020,41(2):113-117.XUE Hai,HE Yang,MENG Xiangmin,et al.Vacuum freeze-drying technology and properties of potato snowflakes[J].Food Industry,2020,41(2):113-117.
[8]XIA J J,GUO Z L,FANG S,et al.Effect of drying methods on volatile compounds of burdock(Arctium lappa L.)root tea as revealed by gas chromatography mass spectrometry-based metabo-lomics[J].Foods,2021,10(4):2-12.
[9]ZHANG L J,DONG X B,FENG X,et al.Effects of drying process on the volatile and non-volatile flavor compounds of Lentinula edodes[J].Foods,2021,10(11):4-11.
[10]ZHANG L H,QIAO Y,WANG C,et al.Effects of freeze vacuum drying combined with hot air drying on the sensory quality,active components,moisture mobility,odors,and microstructure of kiwifruits[J].Food Quality,2019,2019:1-11.
[11]KUMAR D,LADANIYA M S,GURJAR M,et al.Impact of drying methods on natural antioxidants,phenols and flavanones of immature dropped Citrus sinensis L.osbeck fruits[J].Scientific Reports,2022,12(1):1-7.
[12]BAI X T,GAO J Q,YANG Y,et al.Effects of drying methods on the structure and emulsifying capacity of egg yolk lecithin[J].Agricultural and Biological Engineering,2020,13(4):241-243.
[13]CHARLES A L,SRIDHAR K,ALAMSJAH M A.Effect of drying techniques on color and bioactive potential of two commercial edible Indonesian seaweed cultivars[J].Applied Phycology,2020,32(1):567-571.
[14]MICHALSKA-CIECHANOWSKA A,HENDRYSIAK A,BRZEZOWSKA J,et al.How do the different types of carrier and drying techniques affect the changes in physico-chemical properties of powders from chokeberry pomace extracts?[J].Foods,2021,10(8):20-23.
[15]LI Q,LV Y B,SU K Y,et al.Effect of drying methods on the texture properties and active ingredients in Longan flesh[J].E3S Web of Conferences,2021,251:2-3.
[16]CAO J,FENG A G,HE Y F,et al.The effect and mechanism of four drying methods on the quality of tilapia fillet products[J].Food Frontiers,2022,3(2):321-326.
[17]曾凤泽,郭慧玲,李淑珍.不同干燥方法对红枣黄烷-3-醇、黄酮醇含量及抗氧化活性的影响[J].食品研究与开发,2020,41(12):147-151.ZENG Fengze,GUO Huiling,LI Shuzhen.Effects of different drying methods on flavan-3-ols,flavonols content and antioxidant activity of jujube[J].Food Research and Development,2020,41(12): 147-151.
[18]HARGUINDEGUY M,FISSORE D.Micro freeze-dryer and infraredbased PAT:Novel tools for primary drying design space determination of freeze-drying processes[J].Pharmaceutical Research,2021,38(4):710-717.
[19]李珂昕,蔡敬民,胡勇,等.干燥方法对蓝莓果粉品质的影响[J].中国南方果树,2019,48(6):99-101.LI Kexin,CAI Jingmin,HU Yong,et al.Effects of different drying methods on quality of blueberry fruit powder[J].South China Fruits,2019,48(6):99-101.
[20]杜腾飞,赵丽娟,王丹丹,等.柠檬片真空远红外干燥特性及对品质的影响[J].天津科技大学学报,2019,34(3):24-26.DU Tengfei,ZHAO Lijuan,WANG Dandan,et al.Drying characteristics and product quality of lemon slice under vacuum far-infrared drying[J].Journal of Tianjin University of Science & Technology,2019,34(3):24-26.
[21]张苗青,程菲儿,常明昌,等.不同干燥方法对非硫护色后杏鲍菇干制产品品质的影响[J].现代食品科技,2017,33(12):166-168.ZHANG Miaoqing,CHENG Fei'er,CHANG Mingchang,et al.Effects of different drying methods on the quality of Pleurotus eryngii dried productafter non-sulfite color protection[J].Modern Food Science and Technology,2017,33(12):166-168.
[22]NGUYEN V,LE M.Influence of various drying conditions on phytochemical compounds and antioxidant activity of carrot peel[J].Beverages,2018,4(4):9-11.
[23]OSTROWSKALIG ZA E.The effect of composition,pre-treatment on the mechanical and acoustic properties of apple gels and freeze-dried materials[J].Gels,2022,8(2):13-15.
[24]ANSAR,NAZARUDDIN,AZIS A D.Effect of vacuum freeze-drying condition and maltodextrin on the physical and sensory characteristics of passion fruit(Passiflora edulis Sims)extract[J].Earth and Environmental Science,2019,355(1):7-9.
[25]LAZOU A Ε,DERMESONLOUOGLOU E K,GIANNAKOUROU M C.Modeling and evaluation of the osmotic pretreatment of tomatoes(S.lycopersicum) with alternative sweeteners for the production of candied products[J].Food and Bioprocess Technology,2020,13(6):957-960.
[26]李卓豪,毕金峰,易建勇,等.不同小分子糖渗透草莓的传质动力学及对真空冷冻干燥草莓品质的影响[J].食品科学,2022,43(17):95-104.LI Zhuohao,BI Jinfeng,YI Jianyong,et al.Mass transfer kinetics of osmotic dehydration of strawberries with various small-molecule sugars and their effect on the quality of freeze-dried strawberries[J].Food Science,2022,43(17):95-104.
[27]商桑,高伦江,曾小峰,等.前处理方法在果蔬真空冷冻干燥中的应用研究进展[J].南方农业,2021,15(28):42-44.SHANG Sang,GAO Lunjiang,ZENG Xiaofeng,et al.Study progress in the application of pretreatment method to vacuum,freeze and dry fruits and vegetables[J].South China Agriculture,2021,15(28):42-44.
[28]KUCNER A,KLEWICKI R,SÓJKA M.The influence of selected osmotic dehydration and pretreatment parameters on dry matter and polyphenol content in highbush blueberry (Vaccinium corymbosum L.)fruits[J].Food and Bioprocess Technology,2013,6(8):2034-2045.
[29]SHI D F,YIN C M,FENG X,et al.Effect of ultrasound and cellulase pre-treatment on the water distribution,physical properties,and nutritional components of Lentinula edodes chips[J].Food and Bioprocess Technology,2020,13(4):630-633.
[30]Drying of red beetroot after osmotic pretreatment:Kinetics and quality considerations[J].Chemical and Process Engineering,2015,36(3):349-352.
[31]RUIZ-FERNÁNDEZ A R,CAMPOS L,GUTIERREZ-MALDONADO S E,et al.Nanosecond pulsed electric field(nsPEF):Opening the biotechnological Pandora's box[J].Molecular Sciences,2022,23(11):17-18.
[32]ZONGO P A,KHALLOUFI S,MIKHAYLIN S,et al.Pulsed electric field and freeze-thawing pretreatments for sugar uptake modulation during osmotic dehydration of mango[J].Foods,2022,11(17):11-13.
[33]WIKTOR A,LANDFELD A,MATYS A,et al.Selected quality parameters of air-dried apples pretreated by high pressure,ultrasounds and pulsed electric field-a comparison study[J].Foods,2021,10(8):10-12.
[34]MATYS A,WITROWA-RAJCHERT D,PARNIAKOV O,et al.Application of pulsed electric field prior to vacuum drying: Effect on drying time and quality of apple tissue[J].Agricultural Engineering,2022,68(2):97-100.
[35]PARNIAKOV O,LEBOVKA N,WIKTOR A,et al.Applications of pulsed electric fields for processing potatoes: Examples and equipment design[J].Agricultural Engineering,2022,68(2):49-60.
[36]XU B G,CHEN J N,SYLVAIN TILIWA E,et al.Effect of multi-mode dual-frequency ultrasound pretreatment on the vacuum freeze-drying process and quality attributes of the strawberry slices[J].Ultrasonics Sonochemistry,2021,78:7-9.
[37]FONG-IN S,NIMITKEATKAI H,PROMMAJAK T,et al.Ultrasound-assisted osmotic dehydration of litchi:Effect of pretreatment on mass transfer and quality attributes during frozen storage[J].Food Measurement and Characterization,2021,15(4):3591-3595.
[38]AMOAH R E,WIREKO-MANU F D,ODURO I,et al.Effect of pretreatment on physicochemical,microbiological,and aflatoxin quality of solar sliced dried ginger (Zingiber officinale Roscoe) rhizome[J].Food Science&Nutrition,2020,8(11):5939-5940.
[39]et al.The effect of pre-treatment(blanching,ultrasound and freezing)on quality of freeze-dried red beets[J].Foods(Basel,Switzerland),2021,10(1):11-13.
[40]BIKILA A M,TOLA Y B,ESHO T B,et al.Starch composition and functional properties of raw and pretreated anchote (Coccinia abyssinica (Lam.)Cogn.)tuber flours dried at different temperatures[J].Food Science&Nutrition,2022,10(3):656-658.
[41]VATSYAYAN S,RAINA R,KUMAR M.Influence of blanching and guar gum pretreatments on total phenolic content and antioxidant activity of cabinet-dried white bitter gourd Momordica charantia L[J].Applied and Natural Science,2022,14(2):328-330.
[42]MAHMUDATUSSA'ADAH A,PATRIASIH R,MAULANI R R,et al.Effect of blanching pre-treatment on colour and anthocyanin of dried slice purple sweet potato (Ipomoea batatas L)[J].Conference Series,2019,14:3-4.
[43]MAGANGANA T P,MAKUNGA N P,LA GRANGE C,et al.Blanching pre-treatment promotes high yields,bioactive compounds,antioxidants,enzyme inactivation and antibacterial activity of 'wonderful' pomegranate peel extracts at three different harvest maturities[J].Antioxidants,2021,10(7):19-21.
[44]LIU Y,LIAO M Y,RAO L,et al.Effect of ultra-high pressure homogenization on microorganism and quality of composite pear juice[J].Food Science&Nutrition,2022,10(9):3080-3082.
[45]ZHANG L H,QIAO Y,LIAO L,et al.Effects of ultrasound and ultra-high pressure pretreatments on volatile and taste compounds of vacuum-freeze dried strawberry slice[J].LWT-Food Science and Technology,2022,3:5-7.
[46]JANOWICZ M,LENART A.Effect of osmotic pretreatment combined with vacuum impregnation or high pressure on the water diffusion coefficients of convection drying: Case study on apples[J].Foods,2021,10(11):11-13.
[47]BOUKIL A,PERREAULT V,CHAMBERLAND J,et al.High hydrostatic pressure-assisted enzymatic hydrolysis affect mealworm allergenic proteins[J].Molecules(Basel,Switzerland),2020,25(11):5-9.
[48]YUAN L,LIANG X J,PAN X,et al.Effects of high hydrostatic pressure combined with vacuum-freeze drying on the aroma-active compounds in blended pumpkin,mango,and jujube juice[J].Foods(Basel,Switzerland),2021,10(12):14-16.
[49]USTINOVA M E,YASHONKOV A A.Experimental studies into the kinetics of the process of vacuum drying of carrot chips[J].Earth and Environmental Science,2021,22(11):4-6.
[50]SONG G S,LIU J Y,SHUI R F,et al.Effect of steam explosion pretreatment on the composition and bioactive characteristic of phenolic compounds in Chrysanthemum morifolium Ramat cv.Hangbaiju Powder with various sieve fractions[J].Food Science & Nutrition,2022,10(6):1894-1896.
[51]XU X,ZHANG L,FENG Y B,et al.Ultrasound freeze-thawing style pretreatment to improve the efficiency of the vacuum freeze-drying of okra and the quality characteristics of the dried product[J].Ultrasonics Sonochemistry,2021,70:4-10.
[52]ZHU L,LIANG X R,LU Y S,et al.Effect of freeze-thaw cycles on juice properties,volatile compounds and hot-air drying kinetics of blueberry[J].Foods,2021,10(10):4-10.
Research Progress in the Application of Vacuum Freeze-Drying and Pretreatment Methods