我国水资源丰富,鱼类产量高,截至2021 年年底,我国养殖水产总产量5 394.41 万t,其中鱼类约占52.36%[1]。由于鱼类自身水分含量高和营养成分丰富的特点,导致其在贮藏和运输途中易受微生物和自身内源酶的影响,会发生鱼体品质下降甚至腐败变质。因此,常常需要对鱼体进行保鲜处理[2],常见的鱼类保鲜方式主要有冷冻保鲜、气调保鲜、辐射保鲜、化学保鲜、生物保鲜等[3]。
冷冻保鲜常常应用于鱼类保鲜中,其是利用冷冻的方式,将鱼体的中心温度降至-18 ℃或以下,并在该温度下贮藏运输的一种水产品保鲜技术,具有应用广、成本低的特点[4]。冷冻保鲜是利用低温抑制鱼体中微生物生长和酶的活性,降低化学反应速率,从而维持鱼肉品质并延长其货架期[5]。但是由于长时间冻结和高不饱和脂肪酸难凝固等原因,在冷冻贮藏过程中鱼肉仍会发生冰晶生长、蛋白质变性、脂质氧化等不良变化,降低了鱼产品品质[5-7]。
为了进一步有效抑制鱼体新鲜度和品质的下降,常常将鱼体进行镀冰衣处理[8],在冰衣液中加入生物保鲜剂,可以弥补纯水冰衣抗氧化和抑菌性不足的问题,从而提高鱼类在贮藏期间的品质[9]。本文综述了生物保鲜剂结合镀冰衣技术在鱼类冷冻贮藏中的研究进展,对生物保鲜剂的来源、种类以及生物保鲜剂结合镀冰衣技术对鱼类保鲜效果的研究进行总结,并对鱼类冷冻结合生物保鲜研究方向进行展望,以期为鱼类在低温下保藏提供理论参考。
镀冰衣技术是通过将鱼体温度降至冻结点以下,利用快速喷淋或浸渍冰衣液的方式[10],在鱼肉表面形成一层薄冰的保鲜方法[11]。制备形式有单层镀冰衣和双层镀冰衣。现多数是单层冰衣的应用,双层冰衣研究较少,但双层冰衣的保鲜效果更具优势[12]。一般冰衣量为10%~20%(占鱼体净重的百分比)[13]。镀冰衣保鲜具有成本低、操作过程简单、可适用于不同鱼类等优点[14]。镀冰衣结合冻藏对鱼体保鲜的影响见表1。
表1 镀冰衣结合冻藏对鱼体保鲜的影响
Table 1 Effect of ice-glazing technology combined with frozen storage on fish preservation
样品 处理方式 冻藏条件 品质指标 参考文献伦敦鱼片 镀冰衣-12 ℃,30 d 与无冰衣样品相比,硫代巴比妥酸值、游离脂肪酸值、菌落总数值更低;与无冰衣样品相比,蛋白质含量、脂肪含量、水分含量更高[15]鲶鱼鱼块 镀冰衣-18 ℃,60 d 与无水冰衣样品相比,总挥发性盐基氮值、弹性降低率更低,pH 值变化更缓慢;与无冰衣样品相比,硬度值、弹性更大,持水率更高[16]镀冰衣-25 ℃,60 d 与无水冰衣样品相比,总挥发性盐基氮值、弹性降低率更低,pH 值变化更缓慢;与无冰衣样品相比,硬度值、弹性更大,持水率更高
镀冰衣对鱼体保鲜机理主要是利用冰衣可以减少鱼体水分流失、阻隔氧气、减缓鱼体中脂肪和蛋白质的氧化、防止干耗和冻结烧等不良现象[17]。Gandotra 等[15]研究了镀冰衣结合冻藏对伦敦鱼片质量的影响,将伦敦鱼片在-12 ℃下冻藏30 d,发现有冰衣样品比无冰衣样品的蛋白质、脂质、水分含量分别高2.02%、1%和5.3%;硫代巴比妥酸(thiobarbituric acid,TBA)、游离脂肪酸(free fatty acid,FFA)和菌落总数(total plate count,TPC)分别低4.02 mg MDA/kg、8.51%和4.00 lg(CFU/g),表明镀冰衣能降低脂质氧化,减少鱼体水分损失,提高鱼片冻藏期间的品质。赵启蒙等[16]将鲶鱼进行镀冰衣和冻藏处理,发现在-18 ℃冻藏60 d 时,有冰衣的样品持水率比无冰衣样品高3.2%,总挥发性盐基氮(total volatile basic nitrogen,TVB-N)和弹性降低率分别低1.64 mg/100 g 和2.9%;另外,在-25 ℃冻藏60 d 时,与无冰衣样品相比,有冰衣的样品持水率高3.6%,总挥发性盐基氮和弹性降低率分别低0.42 mg/100 g 和3.2%,表明镀冰衣结合冻藏能减缓鱼体品质下降,且温度越低保鲜效果越好。
生物保鲜剂是指从植物、动物、微生物中提取的生物体自身组成成分或代谢产物,按其来源可分为植物源、动物源、微生物源保鲜剂[18]。天然保鲜剂的作用机理主要是两个方面,一是通过改变微生物细胞膜的渗透性、中断蛋白质合成和细胞代谢来抑制腐败微生物的生长,二是通过和自由基结合从而终止自由基的自氧化反应,或调节某些氧化酶和抗氧化酶的活性来抑制蛋白和脂质氧化[19]。生物保鲜剂相比人工合成保鲜剂,具有价格低、来源广、毒性低、易降解、稳定性好、抗菌性强、作用范围广等优点,已被广泛研究,并成功应用于冷冻全鱼、冷冻鱼片和鱼糜的保鲜中[20]。不同生物保鲜剂的保鲜机制与特点见表2。
表2 不同生物保鲜剂的保鲜机制与特点
Table 2 Preservation mechanism and characteristics of different biological preservatives
保鲜剂类型 主要代表物 保鲜机制 优点 缺点 参考文献植物源 肉桂醛、茶多酚、迷迭香、花青素杀菌、抑菌、抗氧化、改变酶的活性 种类多、来源广 挥发性高、反应性强、光化学变化大[21-23]动物源 壳聚糖、鱼精蛋白、蜂胶杀菌、抑菌、抗氧化、破坏生物膜、成膜性广谱抑菌性、能抑制生物膜的形成 成本高、提取率低 [24-25]微生物源 乳酸菌、纳他霉素 杀菌、抑菌、改变pH 值 安全、成本低 不稳定,抗菌谱较窄[26-27]
相比其他来源保鲜剂,植物源保鲜剂应用最广泛。植物源保鲜剂是从花草、水果、蔬菜和海藻等植物中提取的生物活性成分,如精油、多酚、多糖、醌类与生物碱类,其具有显著的抗氧化和抗菌活性[28-29]。目前已经发现上千种植物具有抗菌特性,并从植物中提取了上万种抗菌化合物[30]。通常是利用固-液萃取、水蒸气提取法、溶剂浸提法、超临界CO2 萃取法来提取,可使用萃取助剂、超声波辅助、微波辅助等提高提取率[31]。蓝蔚青等[32]将迷迭香水溶性提取物加入冰衣液中,对卵形鲳鲹进行镀冰衣,并在-20 ℃下冻藏5 个月,发现含1.0 g/L 和2.0 g/L 迷迭香的冰衣样品中的总巯基含量(22.7%和24.8%)高于纯水冰衣样品(19%),且总挥发性盐基氮和硫代巴比妥酸均低于纯水冰衣样品,表明含迷迭香的冰衣能有效减缓鱼体冻藏期间的品质下降。Lin 等[33]利用茶的水提取物冰衣液对鲣鱼片进行镀冰衣,然后在-20 ℃下冻藏16 周,发现含5%绿茶和5%茯苓茶的冰衣能降低冷冻鲣肉中蛋白质和脂质氧化;相比纯水冰衣样品,含绿茶和茯苓茶的样品中的挥发性氮(volatile based nitrogen,VBA)分别降低了3.0 mg/100 g 和2.6 mg/100 g;硫代巴比酸反应物(thiobarbituric acid reactants,TBARS)分别降低了7.49 nmol/g和7.83 nmol/g。Trigo 等[34]利用无皂苷藜麦乙醇提取物对大西洋鲭鱼镀冰衣,然后在-18 ℃下冻藏8 个月,与纯水冰衣样品相比,含无皂苷藜麦的样品过氧化值(peroxide value,POV)和荧光比值(fluorescence ratio,FR)分别降低0.92 mmol/kg 和0.24,表明无皂苷藜麦水乙醇提取物能抑制鱼肉中脂质的水解和氧化。
上述植物源保鲜剂的保鲜机理:1) 抗菌活性,能抑制微生物的生长[23,35]。2)抗氧化作用,能清除自由基、有效抑制自由基链式反应、延缓脂肪氧化[36-37]。3)改变酶的活性。如大多数植物多酚具有很强的抗氧化性,其能抑制氧化酶的酶活性,同时提高抗氧化酶的酶活性[25]。
动物源生物保鲜剂是从各种动物体中提取出的成分[3],如壳聚糖、鱼精蛋白、蜂胶等,其具有抗菌、抗氧化、生物可降解、成膜性强等特点[38]。动物源性生物保鲜剂具有广谱抑菌性,能影响生物膜内细菌细胞的活力和完整性,并降低总胞外多糖含量,从而破坏生物膜基质的结构[39]。并且其通过清除自由基及良好的成膜性隔绝空气,减少氧化变质速度[40]。动物源保鲜剂中研究最广泛的是壳聚糖,这是一种从甲壳类动物壳中提取的线性生物聚合物,壳聚糖通过氨基正电荷与带负电的微生物细胞膜相互作用导致细菌膜破裂,从而抑制细菌生长[41]。利用含壳聚糖的冰衣液对鱼类冷冻保鲜被广泛报道,均发现其能有效抗菌,抑制氧化反应。Soares 等[42]利用壳聚糖冰衣贮藏三文鱼鱼片6 个月,发现总活菌数(total viable count,TVC)相比纯水冰衣减小0.7~2.0 lg(CFU/g),且感官品质更佳。除此之外还有利用鱼类自身水解物作为抗菌剂。Ezquerra-Brauer 等[43]利用含大型鱿鱼皮的亲脂性提取物的冰衣液保鲜大西洋鲐鱼,在-18℃下储存6 个月,含有提取物的冰衣样品的过氧化值比纯水冰衣样品低0.91 mmol/kg。Cavonius 等[44]利用鲱鱼肉汁对鲱鱼鱼片镀冰衣,在-20 ℃存放52 周,含有鲱鱼肉汁的冰衣样品的过氧化值和硫代巴比酸反应物比无冰衣样品分别低4 117 μmol/kg 和116 μmol MDA/kg,表明含有鲱鱼肉汁的冰衣能有效减少鲱鱼鱼片的脂质氧化。Taheri[45]利用彩虹沙丁鱼蛋白水解物(浓度4%)对黑鲳鱼片进行镀冰衣处理,与未处理样品相比,其过氧化值降低7 meq/kg,硫代巴比酸反应物降低3.3 mg MDA/kg,蛋白质羰基值降低0.25 μmol/g,可接受度感官评分增加1.25 分,硬度感官评分增加0.75 分。虽然动物源保鲜剂抑菌效果好,但存在着成本较高、提取率较低等缺点,需进一步提高其提取工艺[25]。
微生物源保鲜剂是一种以菌治菌的保鲜方式,具有繁殖快、生长周期短、不受季节限制、易培养等优点[46]。微生物可以代谢产生多种抗生素、细菌素、过氧化氢和有机酸等抑菌物质[3],国内外研究较多的是乳酸菌及其代谢产物[47]。保鲜机理一方面是通过合成乳酸[48],降低pH 值的方式来抑制细菌的生长,另一方面是通过静电作用穿透细胞壁,到达细胞膜并结合其表面脂质成分,改变细胞膜渗透性,从而引起细胞质流出而杀死细菌[27,49]。Sarika 等[50]利用乳酸菌的细菌素对鳕鱼进行镀冰衣保鲜,在-18 ℃储存28 d 后,发现与纯水冰衣相比,感官评分更高。游离脂肪酸、总挥发性盐基氮等指标也比纯水冰衣更低,说明其能有效保护鱼肉品质。但将微生物源保鲜剂加入冰衣液的冻藏保鲜研究较少,需进一步探索。
由于单一的生物保鲜剂保鲜效果有限,所以复合生物保鲜剂成为研究热点。复合保鲜剂是指不同功能的生物保鲜剂的混合物,其保鲜机理是根据栅栏技术原理,发挥保鲜剂的协同作用,提高保鲜效果[51]。蓝蔚青等[52]利用含15.0 g/L 壳聚糖结合2.0 g/L 迷迭香水溶性提取物的冰衣对卵形鲳鲹镀冰衣,在-20 ℃冻藏5 个月,抑菌效果明显,菌落总数最低;与纯水冰衣相比,样品的硫代巴比妥酸、总挥发性盐基氮、K 值分别降低1.01 mg/kg、4.8 mg/100 g、10.8%;另外,黏度降低808.53,硬度增加3 016.87 g,弹性增加0.1。Luo 等[53]利用Nisin、壳聚糖、植酸的混合酸性溶液,对太平洋秋刀鱼进行镀冰衣,在-18 ℃冻藏12 个月,通过正交试验,发现经过0.5 g/L Nisin、5 g/L 壳聚糖和0.2 g/L 植酸冰衣处理的样品,在冻藏后新鲜度和品质最高。He 等[54]利用壳聚糖和儿茶素复合物对罗非鱼进行镀冰衣处理,在-1.5 ℃下冻藏10 d 时,5.0 g/L 壳聚糖冰衣样品的菌落总数(total colonies counts,TCC)为4.0 lg(CFU/g),5.0 g/L壳聚糖和3.0 g/L 儿茶素的复合冰衣样品菌落总数低于3.5 lg(CFU/g),说明复合冰衣抗菌性更强。在第25 天,壳聚糖冰衣样品过氧化值为2.54 mmol/kg,而复合冰衣样品仅有0.85 mmol/kg;壳聚糖冰衣样品硫代巴比酸反应物为1.268 mg MDA/kg,而复合冰衣样品为0.749 mg MDA/kg,上述结果表明壳聚糖和儿茶素复合液具有抗氧化性,是一种良好的保鲜剂。
不同来源的生物保鲜剂结合镀冰衣对鱼体保鲜效果总结见表3。
表3 生物保鲜剂结合镀冰衣对鱼体保鲜的影响
Table 3 Effect of biological preservatives combined with ice-glazing technology on fish preservation
样品 保鲜剂来源 保鲜剂 冻藏条件 品质指标 参考文献卵形鲳鲹植物源 1.0 g/L 迷迭香-20 ℃,5 个月 与纯水冰衣样品相比,TBA 值、TVB-N 值更低,黏性更小;与纯水冰衣样品相比,总巯基含量更高,硬度值、弹性更大[32]2.0 g/L 迷迭香-20 ℃,5 个月 与纯水冰衣样品相比,TBA 值、TVB-N 值更低,黏性更小;与纯水冰衣样品相比,总巯基含量更高,硬度值、弹性更大鲣鱼鱼片植物源 5%绿茶水提取物-20 ℃,16 周 与纯水冰衣样品相比,TBARS 值、VBA 值更低;与纯水冰衣样品相比,对蛋白质保护作用更好[33]-20 ℃,16 周 与纯水冰衣样品相比,TBARS 值、VBA 值、蛋白质羰基值更低;与纯水冰衣样品相比,对蛋白质保护作用更好大西洋鲭鱼5%茯苓茶水提取物植物源 1.36 g/L无皂苷藜麦-18 ℃,8 个月 与纯水冰衣样品相比,TBA 值、PV 值、FR、FFA 值更低;与纯水冰衣样品相比,感官评分更高,熟肉口感、气味更好[34]三文鱼鱼片动物源 15.0 g/L 壳聚糖-18 ℃,6 个月 与纯水冰衣样品相比,TVC 更低;与纯水冰衣样品相比,感官评分更高 [42]大西洋鲐鱼动物源 0.73 g/L 大型鱿鱼皮提取液-18 ℃,6 个月 与纯水冰衣样品相比,FFA 值、FR 更低;与纯水冰衣样品相比,感官评分更高[43]鲱鱼鱼片动物源 鲱鱼汁-20 ℃,52 周 与纯水冰衣样品相比,POV 值、TBA 值、TBARS 值更低;与纯水冰衣样品相比,感官评价更高[44]黑鲳鱼鱼片动物源 4%彩虹沙丁鱼蛋白水解物-18 ℃,6 个月 与纯水冰衣样品相比,POV 值、TBARS 值、蛋白质羰基值、FFA 值更低;与纯水冰衣样品相比,可接受度提高、硬度值更大[45]鳕鱼片 微生物源1 600 AU/mL乳酸菌细菌素-18 ℃,28 d 与纯水冰衣样品相比,FFA 值、TVB-N 值更低,pH 值变化更缓慢;与纯水冰衣样品相比,感官评分更高[50]卵形鲳鲹植物源、动物源15.0 g/L 壳聚糖、2.0 g/L 迷迭香提取物-20 ℃,5 个月 与纯水冰衣样品相比,TBA 值、TVB-N 值、K 值、FR、TVC 更低,黏性更小;与纯水冰衣样品相比,硬度值、弹性更大[52]罗非鱼鱼片动物源 5.0 g/L 壳聚糖-1.5 ℃,25 d 与无冰衣样品相比,TBARS 值、POV 值、TCC 更低;与无冰衣样品相比,感官评分更高[54]植物源、动物源5.0 g/L 壳聚糖、3.0 g/L 儿茶素-1.5 ℃,25 d 与无冰衣样品相比,TBARS 值、POV 值、TCC 更低;与无冰衣样品相比,感官评分更高
目前,人们对鱼类的消费需求极大增加,对鱼类营养、健康、安全的要求逐步提高。因此,鱼类的保鲜技术成为研究的重点。生物保鲜剂因其天然、安全、高效等优点成为生鲜鱼类保鲜领域的研究热点。复合生物保鲜剂是结合不同类型的生物保鲜剂,利用他们之间的协同增效作用,可以更全面、更高效地保持鱼类产品的食用品质。保鲜方法也将由贮藏时间较短的冷藏保鲜向贮藏时间更长的冷冻保藏发展,而生物保鲜剂结合冰衣液的冻藏保鲜具有潜在优势。
鱼类的生物保鲜剂结合镀冰衣冻藏保鲜是一种天然、安全、高效的鱼类保鲜技术,具有保鲜效果好的优点。但仍面临一些挑战,比如目前大量研究集中在生物保鲜剂结合冰衣对鱼类保鲜效果上,对生物保鲜剂从冰冻层到冻结肌肉层的分子迁移动力学研究较少,需要深入研究;在鱼肉冷冻体系中,生物保鲜剂的抗菌性和抗氧化性如何发挥作用的机理研究较少,需要深入揭示;大多数植物保鲜剂都含有色素和气味,会对鱼类产品的感官和风味产生不良影响,因此,寻找合适的植物源生物保鲜剂是未来研究的方向之一;对生物保鲜剂进行复配并应用于特定的鱼类产品,也是未来研究的方向之一。
[1] 农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.中国渔业统计年鉴-2022[M].北京: 中国农业出版社,2022.Ministry of Agriculture and Rural Affairs of Fisheries and Fishery Administration,National Fisheries Technology Extension Station,Chinese Fisheries Society.2022 China Fishery Statistical Yearbook[M].Beijing: China Agriculture Press,2022.
[2] 叶彪,关志强,马超锋,等.涂膜技术在水产品冷保鲜中的应用分析[J].制冷,2017,36(3): 74-79.YE Biao GUAN Zhiqiang,MA Chaofeng,et al.The application of coating technology in cold preservation aquatic products[J].Refrigeration,2017,36(3): 74-79.
[3] 陈文慧,徐莉,梁振纲.生物保鲜剂在水产品保鲜中的应用研究[J].食品工业,2017,38(5): 52-57.CHEN Wenhui,XU Li,LIANG Zhengang.Application of biopreservative on aquatic products[J].The Food Industry,2017,38(5): 52-57.
[4] SHARIF Z I M,MUSTAPHA F A,JAI J,et al.Review on methods for preservation and natural preservatives for extending the food longevity[J].Chemical Engineering Research Bulletin,2017,19: 145.
[5] 文静,梁显菊.食品的冻结及解冻技术研究进展[J].肉类研究,2008,22(7): 76-80.WEN Jing,LIANG Xianju.Research progress on food freezing and thawing technology[J].Meat Research,2008,22(7): 76-80.
[6] SHI L,YANG T,XIONG G Q,et al.Influence of frozen storage temperature on the microstructures and physicochemical properties of pre-frozen perch (Micropterus salmoides)[J].LWT-Food Science and Technology,,2018,92: 471-476.
[7] BENJAKUL S,SUTTHIPAN N.Muscle changes in hard and soft shell crabs during frozen storage[J].LWT-Food Science and Technology,2009,42(3): 723-729.
[8] 周鹏程,谢晶.影响冻结贮运过程鱼类品质变化因素的研究进展[J].包装工程,2020,41(13): 1-7.ZHOU Pengcheng,XIE Jing.Advance in research on the factors affecting the fish quality in frozen storage and transportation[J].Packaging Engineering,2020,41(13): 1-7.
[9] ÖZYURT G,KULEY E,BALIKÇI E,et al.Effect of the icing with rosemary extract on the oxidative stability and biogenic amine formation in sardine (Sardinella aurita) during chilled storage[J].Food and Bioprocess Technology,2012,5(7): 2777-2786.
[10] 赵启蒙.鲶鱼冻结特性及镀冰衣和腌制处理对其冻藏品质影响的研究[D].上海: 上海海洋大学,2015 .ZHAO Qimeng.Study on the freeze feature and effects of pickled and ice-coating process in frozen-storage on the quality of catfish[D].Shanghai: Shanghai Ocean University,2015.
[11] 韩志慧,侯柄姝,马俪珍.冷冻防护剂和镀冰衣处理对冷冻革胡子鲶鱼段的品质保护效果[J].山西农业科学,2013,41(4): 381-386.HAN Zhihui,HOU Bingshu,MA Lizhen.The protective effect of frozen repellant and ice-coating on the quality of frozen Cyprinus carpio[J].Journal of Shanxi Agricultural Sciences,2013,41(4): 381-386.
[12] WANG X S,XIE J.Quality attributes of horse mackerel (Trachurus japonicus) during frozen storage as affected by double-glazing combined with theaflavins[J].International Journal of Food Properties,2021,24(1): 713-725.
[13] 谭明堂,王金锋,余文晖,等.冰衣结合保鲜剂处理对冻藏鱿鱼品质的影响[J].渔业现代化,2019,46(4): 73-80.TAN Mingtang,WANG Jinfeng,YU Wenhui,et al.Effects of glazing with preservative treatment on the quality of squid during frozen storage[J].Fishery Modernization,2019,46(4): 73-80.
[14] WU H Z,RICHARDS M P,UNDELAND I.Lipid oxidation and antioxidant delivery systems in muscle food[J].Comprehensive Reviews in Food Science and Food Safety,2022,21(2): 1275-1299.
[15] GANDOTRA R,KOUL M,GUPTA S,et al.Influence of ice glazing and long term storage on some quality parameters of rohu fillets during frozen storage[J].Biolife,2014,2(3): 779-785.
[16] 赵启蒙,许澄,黄雯,等.不同冻藏温度下镀冰衣处理对鲶鱼品质的影响[J].食品工业科技,2015,36(12): 307-310.ZHAO Qimeng,XU Cheng,HUANG Wen,et al.Effect of ice-coating during frozen-storage in different temperatures on the quality of catfish[J].Science and Technology of Food Industry,2015,36(12):307-310.
[17] VANHAECKE L,VERBEKE W,DE BRABANDER H F.Glazing of frozen fish: Analytical and economic challenges[J].Analytica Chimica Acta,2010,672(1/2): 40-44.
[18] 单珂,郭全友,姜朝军,等.生物保鲜剂在水产品保鲜中的应用[J].食品与发酵科技,2018,54(3): 4-8.SHAN Ke,GUO Quanyou,JIANG Chaojun,et al.The application of biopreservatives in preservation of aquatic products[J].Food and Fermentation Sciences & Technology,2018,54(3): 4-8.
[19] YU H H,CHIN Y W,PAIK H D.Application of natural preservatives for meat and meat products against food-borne pathogens and spoilage bacteria: A review[J].Foods,2021,10(10): 2418.
[20] 李柳冰,刘巧瑜,陈海光,等.天然保鲜剂的研究进展[J].广州化工,2018,46(15): 32-34.LI Liubing,LIU Qiaoyu,CHEN Haiguang,et al.Research progress on natural preservative[J].Guangzhou Chemical Industry,2018,46(15): 32-34.
[21] PRAKASH B,KUJUR A,SINGH P P,et al.Plants-derived bioactive compounds as functional food ingredients and food preservative[J].Food Science & Nutrition,2017,1(1):100004.
[22] DHIMAN R,KUMAR AGGARWAL N.Efficacy of plant antimicrobials as preservative in food[M]//Food Preservation and Waste Exploitation.London: IntechOpen,2020.
[23] 蓝蔚青,陈梦玲,王蒙,等.植物源生物保鲜剂对水产品微生物抑菌机制研究进展[J].食品与机械,2018,34(10): 191-195.LAN Weiqing,CHEN Mengling,WANG Meng,et al.Research progress on bacteriostatic mechanism of plant derived biopreservatives against the microbodies in the aquatic products[J].Food & Machinery,2018,34(10): 191-195.
[24] HUSSAIN M A,SUMON T A,MAZUMDER S K,et al.Essential oils and chitosan as alternatives to chemical preservatives for fish and fisheries products: A review[J].Food Control,2021,129: 108244.
[25] 杨焕彬,曾庆培,林光明,等.生物保鲜剂在禽肉保鲜中的应用研究进展[J].轻工学报,2021,36(6): 38-46.YANG Huanbin,ZENG Qingpei,LIN Guangming,et al.Research progress in the application of biological preservatives in poultry preservation[J].Journal of Zhengzhou University of Light Industry(Natural Science Edition),2021,36(6): 38-46.
[26] VERMA D K,THAKUR M,SINGH S,et al.Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis,separation and application[J].Food Bioscience,2022,46: 101594.
[27] RATHOD N B,PHADKE G G,TABANELLI G,et al.Recent advances in bio-preservatives impacts of lactic acid bacteria and their metabolites on aquatic food products[J].Food Bioscience,2021,44:101440.
[28] VIJI P,VENKATESHWARLU G,RAVISHANKAR C N,et al.Role of plant extracts as natural additives in fish and fish products-a review[J].Fish Technol,2017,54(3): 145-154.
[29] ISLAM T,ISLAM M N,ZZAMAN W,et al.Study of antimicrobial,antioxidant and cytotoxicity properties of selected plant extracts for food preservative applications[J].International Journal of Food Studies,2021,10: 95-111.
[30] SOARES M O,FERREIRA DA VINHA A,COUTINHO F,et al.Antimicrobial natural products[J].Microbial pathogens and strategies for combating them: Science,technology and education,2013,2:946-950.
[31] 王欣,徐宝成,罗登林,等.植物源天然抗氧化物质基本特征及其在食用油中的应用研究进展[J].西北农林科技大学学报(自然科学版),2022,50(4): 135-143,154.WANG Xin,XU Baocheng,LUO Denglin,et al.Basic characteristics of plant-derived natural antioxidants and their application in edible oils: A review[J].Journal of Northwest A & F University (Natural Science Edition),2022,50(4): 135-143,154.
[32] 蓝蔚青,刘琳,巩涛硕,等.迷迭香提取物镀冰衣对卵形鲳鲹冻藏期间品质变化影响[J].广东海洋大学学报,2021,41(5): 101-108.LAN Weiqing,LIU Lin,GONG Taoshuo,et al.Effects of ice-glazing with rosemary extract on quality of Trachinotus ovatus during frozen storage[J].Journal of Guangdong Ocean University,2021,41(5): 101-108.
[33] LIN C C,LIN C S.Enhancement of the storage quality of frozen bonito fillets by glazing with tea extracts[J].Food Control,2005,16(2): 169-175.
[34] TRIGO M,RODRíGUEZ A,DOVALE G,et al.The effect of glazing based on saponin-free quinoa (Chenopodium quinoa) extract on the lipid quality of frozen fatty fish[J].LWT-Food Science and Technology,2018,98: 231-236.
[35] 王倩.植物源保鲜剂对冰藏大黄鱼流通期间品质变化影响及微生物作用机制研究[D].上海:上海海洋大学,2017.WANG Qian.Effect of plant source fresh-keeping agent on the quality change of large yellow croaker (Pseudosciaena crocea) with ice during logistics process and its antibacterial mechanism [D].Shanghai: Shanghai Ocean University,2017.
[36] 赵海鹏,谢晶.生物保鲜剂在水产品保鲜中的应用[J].吉林农业科学,2009,34(4): 60-64.ZHAO Haipeng,XIE Jing.Application of bio-preservative on preservation for aquatic products[J].Journal of Jilin Agricultural Sciences,2009,34(4): 60-64.
[37] 李睿,钟正泽,王海燕.植物源生物保鲜剂在动物食品应用中的研究进展[J].农产品加工,2019(9): 66-67,70.LI Rui,ZHONG Zhengze,WANG Haiyan.Advances in the application of botanical biopreservatives in animal food[J].Farm Products Processing,2019(9): 66-67,70.
[38] KUMAR S,MUKHERJEE A,DUTTA J.Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives[J].Trends in Food Science & Technology,2020,97: 196-209.
[39] PATEL M,ASHRAF M S,SIDDIQUI A J,et al.Profiling and role of bioactive molecules from Puntius sophore (freshwater/brackish fish)skin mucus with its potent antibacterial,antiadhesion,and antibiofilm activities[J].Biomolecules,2020,10(6): 920.
[40] 魏子翔,李兰杰,张静静,等.肉类生物保鲜剂应用现状及前景[J].食品研究与开发,2020,41(15): 219-224.WEI Zixiang,LI Lanjie,ZHANG Jingjing,et al.Current application situations and prospects of meat biological preservatives[J].Food Research and Development,2020,41(15): 219-224.
[41] WANG W J,XUE C H,MAO X Z.Chitosan: Structural modification,biological activity and application[J].International Journal of Biological Macromolecules,2020,164: 4532-4546.
[42] SOARES N,SILVA P,BARBOSA C,et al.Comparing the effects of glazing and chitosan-based coating applied on frozen salmon on its organoleptic and physicochemical characteristics over six-months storage[J].Journal of Food Engineering,2017,194: 79-86.
[43] EZQUERRA-BRAUER J,TRIGO M,TORRES-ARREOLA W,et al.Preservative effect of jumbo squid (Dosidicus gigas) skin extract as glazing material during the frozen storage of Atlantic Chub mackerel (Scomber colias)[J].Bulgarian Chemical Communications,2018,50: 131-137.
[44] CAVONIUS L R,UNDELAND I.Glazing herring (Clupea harengus)fillets with herring muscle press juice: Effect on lipid oxidation development during frozen storage[J].International Journal of Food Science & Technology,2017,52(5): 1229-1237.
[45] TAHERI A.Antioxidative effect of rainbow sardine (Dussumieria acuta) protein hydrolysate on lipid and protein oxidation in black pomfret (Parastromateus niger) fillet by glazing[J].Journal of Aquatic Food Product Technology,2015,24(3): 241-258.
[46] 李鹏霞,张兴.生物源保鲜剂研究评述[J].西北林学院学报,2006,21(3): 120-123.LI Pengxia,ZHANG Xing.Comment of research on biological preservatives of fruit and vegetable[J].Journal of Northwest Forestry University,2006,21(3): 120-123.
[47] GOKOGLU N.Novel natural food preservatives and applications in seafood preservation: A review[J].Journal of the Science of Food and Agriculture,2019,99(5): 2068-2077.
[48] 徐畅,于基成,刘秋.微生物源食品保鲜剂的研究进展[J].包装工程,2021,42(13): 9-20.XU Chang,YU Jicheng,LIU Qiu.Research progress on microbial source food preservatives[J].Packaging Engineering,2021,42(13):9-20.
[49] SANTOS J C P,SOUSA R C S,OTONI C G,et al.Nisin and other antimicrobial peptides: Production,mechanisms of action,and application in active food packaging[J].Innovative Food Science & Emerging Technologies,2018,48: 179-194.
[50] SARIKA A R,LIPTON A P,AISHWARYA M S,et al.Isolation of a bacteriocin-producing Lactococcus lactis and application of its bacteriocin to manage spoilage bacteria in high-value marine fish under different storage temperatures[J].Applied Biochemistry and Biotechnology,2012,167(5): 1280-1289.
[51] 余文晖,王金锋,谢晶.响应面法优化金枪鱼复合冰衣液配比[J].食品与发酵工业,2020,46(3): 174-179.YU Wenhui,WANG Jinfeng,XIE Jing.Response surface methodology for optimizing the proportion of tuna compound ice coating solution[J].Food and Fermentation Industries,2020,46(3): 174-179.
[52] 蓝蔚青,赵欣宇,巩涛硕,等.壳聚糖-迷迭香镀冰衣对卵形鲳鲹冻藏期间品质变化影响[J].广东海洋大学学报,2021,41(4):99-108.LAN Weiqing,ZHAO Xinyu,GONG Taoshuo,et al.Effects of ice glazing with chitosan and rosemary extract on the quality changes of Trachinotus ovatus during frozen storage[J].Journal of Guangdong Ocean University,2021,41(4):99-108.
[53] LUO H B,WANG W H,CHEN W,et al.Effect of incorporation of natural chemicals in water ice-glazing on freshness and shelf-life of Pacific saury (Cololabis saira) during-18 ℃frozen storage[J].Journal of the Science of Food and Agriculture,2018,98(9): 3309-3314.
[54] HE Q,GONG B,HE J P,et al.A novel superchilling storage-ice glazing (SS-IG) approach using biopolymer-based composite hydrogel to delay microbiological spoilage and organic oxidation of pre -served tilapia[J].Journal of the Science of Food and Agriculture,2018,98(13): 5045-5051.
Research Progress of Biological Preservatives Combined with Ice-Glazing Technology for Frozen Preservation of Fish
彭春,王双双,谭模,等.生物保鲜剂结合镀冰衣技术在鱼类冻藏保鲜中的研究进展[J].食品研究与开发,2023,44(22):186-191.
PENG Chun,WANG Shuangshuang,TAN Mo,et al.Research Progress of Biological Preservatives Combined with Ice-Glazing Technology for Frozen Preservation of Fish[J].Food Research and Development,2023,44(22):186-191.