食品极易暴露在外界环境而被农兽药残留、致病菌以及生物毒素等污染,被污染后的食品一旦被人体摄入极易引发严重的食品安全事故,而传统食品安全检测技术存在处理时间长、操作复杂以及设备价格昂贵等问题。因此,亟待开发高效、精确且可用于现场实时监测的食品安全检测技术[1]。目前,常用的食品安全检测技术主要有色谱分析法[2]、免疫分析法[3]、荧光分析法[4]和传感器技术[5]。传感器技术是目前发展较为迅速的技术,其中表面等离子共振(surface plasmon resonance,SPR)传感器具有快速响应、精确检测等优点[6],不仅能检测出被分析物的浓度、特异性以及动力学常数等信息,还能对分析物进行现场监测[7]。
分子印迹聚合物(molecularly imprinted polymer,MIP)是基于分子印迹技术制备而成的高分子聚合物,可通过三维空间结构和分子间作用力如氢键作用力、范德华力、静电作用力和疏水作用力等对模板分子或模板分子类似物进行专一性识别[8],现已成功应用于食品中活性成分的分离、农兽药残留的检测以及模拟酶催化危害物降解等多个方面[9-10]。分子印迹技术与表面等离子共振技术联用可以集成两种技术的优点,兼具分子印迹的特异性识别和表面等离子共振传感器高灵敏度的优势,因此在食品安全检测等风险评估的光学传感领域具有巨大潜力和应用前景。
本文旨在概述基于分子印迹的表面等离子共振传感器特异性识别食品中有害化学因子的原理及应用,总结基于分子印迹的表面等离子共振传感器在检测食品中农兽药、毒素以及其他有害物质残留的研究进展,综合分析该领域目前所面临的挑战,并对未来的发展方向提出思考和建议。
MIP 是一种人工合成、具有分子识别能力的新型高分子材料,基本原理与抗原-抗体特异性结合理论相类似,可特异性识别目标分子或模板分子。其制备过程(图1)[11]:模板分子与功能单体在溶液中通过共价或非共价键作用相互结合形成络合物,在高浓度交联剂和引发剂条件下通过聚合反应与该络合物结合,通过溶剂萃取或化学断裂的方法破坏聚合物-模板相互作用后,得到分子印迹聚合物。分子印迹聚合物结构中存在着可与模板分子大小、形状和官能团特异性互补的位点。因此,MIP 对模板分子有特异性识别的能力,且具有高度选择性。
图1 分子印迹聚合物制备
Fig.1 Preparation of molecularly imprinted polymer
SPR 是一种灵敏的表面分析技术,一束P 偏振光入射到棱镜端面会在棱镜与金属膜表面发生全反射,形成消逝波进入到光疏介质中,并引发金属薄膜中的自由电子形成表面等离子体。表面等离子体集体振荡会产生一种沿着界面传播的横向电磁波,即表面等离子波。当两波波矢量相等时,则会引起金属膜内自由电子产生共振,即发生表面等离子共振。表面等离子共振会导致检测到的反射光强大幅度减弱,此时能量由光子转移到表面等离子,入射光的大部分能量被表面等离子波吸收,使反射光的能量急剧减少,反射光完全消失的角就是SPR 角,SPR 角会随金属薄膜表面折射率的改变而改变,故其可检测出附着在金属薄膜表面物质的量以及构型的改变[7](图2)。
图2 SPR 传感器原理
Fig.2 Schematic diagram of a SPR sensor
基于分子印迹的表面等离子共振(molecularly imprinted polymer -surface plasmon resonance,MIP -SPR)传感器是通过物理吸附、原位聚合、电聚合等方法在传感器芯片表面沉积或合成一层均匀、厚度较薄的分子印迹聚合物,形成能与待测物质发生特异性识别的生物或化学敏感层,当通入溶液中存在与膜特异性结合的待测物时,便会引起SPR 角度变化并被SPR 检测器记录。MIP-SPR 传感器结合了分子印迹高选择性识别和表面等离子共振传感器高灵敏性的优点,能够特异性检测多种食品中常见的农兽药残留和污染物,可实现高灵敏度、高特异性且快速的现场检测与筛查[12]。MIP 技术修饰的SPR 芯片经过特定方法洗涤可重复检测,从而可实现食品安全检测领域样品检测的快速、准确、灵敏和低成本。
Lai 等[13]成功制备了检测茶碱、黄嘌呤和咖啡的MIP-SPR 传感器,发现茶碱MIP-SPR 传感器对结构类似的物质无交叉反应性,且可同时保证SPR 快速分析和与待分析物的特异性结合。这是首次使用MIP-SPR传感器进行检测分析的报道,此后,MIP-SPR 传感技术在食品中农兽药残留、生物毒素等的检测中获得了迅速发展。
由于农药的大量使用,农药残留问题逐渐成为影响食品安全的重要因素[14]。目前,运用MIP-SPR 传感器检测农药残留已取得了较好的效果,其种类主要包括生长素[15]、三嗪[16-18]、杂环类[19]有机除草剂、有机磷[20-24]以及氨基甲酸酯类杀虫剂[23]等(表1)。
表1 MIP-SPR 传感器在农药残留检测中的应用
Table 1 Application of MIP-SPR sensors in detection of agricultural chemical residues
目标物印迹膜类型基质检测限检测线性范围文献甲基对硫磷Ag@MIP/NIP水13.8 mg/L2~30 mg/L[24]甲基对硫磷MIP/NIP10-13 mol/L10-13~10-10 mol/L[22]阿特拉津Au@nanoMIP0.713 4 ng/mL0.5~15 ng/mL[17]阿特拉津Ag/Al@optical fiber@MIP水1.92×10-14 mol/L7.61×10-14 mol/L[18]丙溴磷optical fiber@MIP/NIP水2.5×10-6 μg/L10-4~10-1 mg/L[21]乐果、呋喃丹nanoMIP/NIP水8.37、7.11 ng/L0.04~4.36、0.05~4.50 nmol/L[23]氰草津、西玛津、莠去津nanoMIP/NIP水0.095、0.031、0.091 nmol/L0.1~6.64 nmol/L[16]2,4-二氯苯氧乙酸p(EGDMA-MATrp)MIP/NIP苹果24.57 ng/L0.23~8.0 nmol/L[15]杀草强p(EGDMA-MATrp)MIP/NIP水0.037 nmol/L0.06~11.90 nmol/L[19]毒死蜱Fe3O4@PDA NPs水、苹果0.76 nmol/L0.001~10 μmol/L[20]
Tan 等[22]通过热引发在SPR 传感器芯片表面聚合了具有特异性识别甲基对硫磷的分子印迹膜,该传感器在10-13~10-10 mol/L 范围表现出良好的线性响应且检测限低至10-13 mol/L,通过评估该印迹膜对敌草隆、杀虫畏和杀螟硫磷的检测效果,进一步证实了印迹膜的高度灵敏性和选择性。Saylan 等[16]基于紫外聚合反应制备了灵敏检测氰草津、西玛津和阿特拉津的MIPSPR 传感器,该传感器对氰草津、西玛津和阿特拉津的检测限分别达到了0.095、0.031、0.091 nmol/L,运用该方法改变模板分子也可以检测其他农药。
除了使用金膜和玻璃棱镜折射作为MIP-SPR 传感器元件外,Agrawal 等[18]开发了一种银光纤代替昂贵金膜,将阿特拉津分子印迹涂覆在覆盖了40 nm 厚银膜的长光纤上进行特异性检测,其最低检测限可至1.92×10-14 mol/L。此外,Agrawal 等[18]在阿特拉津分子印迹与覆银光纤之间引入10 nm 厚的铝层,这对提高传感器灵敏度有显著帮助,为MIP-SPR 传感体系的创新提供了新思路。Chen 等[24]使用银膜代替金膜传感器用于甲基对硫磷的检测,由于银对折射率的变化更敏感且等离子共振带比金反射更独特,因此该传感器精确度良好且检测限达到了13.8 mg/L。
纳米粒子具有较高的比表面积,可为印迹模板提供更多的识别位点,因此常采用纳米分子印迹聚合物(nanoMIP)增加分析物和识别位点的结合效率,如借助Fe3O4 磁敏性制备nanoMIP 用于农药残留的检测,可达到借助磁场分离并放大信号的目的。Yao 等[20]将水溶液中的多巴胺自聚合于Fe3O4 NPs 表面形成磁性nanoMIP,并利用SPR 传感器对毒死蜱进行特异性检测,该体系在0.001~10 μmol/L 浓度范围内与SPR 信号线性关系良好,SPR 传感器检出限为0.76 nmol/L。Cakir 等[15]制备聚乙二醇二丙烯酸-N-甲基丙烯酰(L)-色氨酸甲酯纳米膜,并用于2,4-二氯苯氧乙酸(2,4-dichlorophenoxyacetic acid,2,4-D)的选择性检测,经液相色谱与串联质谱联用的方法对比验证,该体系可成功检测苹果样品中的2,4-D。
食品中兽药残留的危害主要包括毒性危害、过敏反应以及三致危害。目前,应用MIP-SPR 传感器检测的兽药残留主要包括磺胺类[25-26]、青霉素类[27-30]、四环素类[31-32]、喹诺酮类[14,33-35]、大环内酯类[36]、氨基糖苷类[37]、糖肽类[38]抗生素等(表2)。
表2 MIP-SPR 传感器在兽药残留检测中的应用
Table 2 Application of MIP-SPR sensors in the detection of veterinary drug residues
目标物印迹膜类型基质检测限检测线性范围文献卡那霉素MIP/NIP蜂蜜、奶粉4.33×10-8、1.2×10-8 mol/L10-7~10-5 mol/L[37]磺胺甲恶唑p(MAA-HEMA-EGDMA)MIP/NIP商品奶0.001 1 μg/L0.025~253.2 μg/L[25]磺胺甲恶唑SPE@MIP/NIP湖水0.01 μg/L0.04~10.0 μg/L[26]环丙沙星MIP/NIP10-11 mol/L10-11~10-7 mol/L[35]环丙沙星nanoMIP/NIP废水3.21、7.1 μg/L[33]环丙沙星nanoMIP牛奶66.8、39.3 nmol/L[34]莫西沙星nanoMIP牛奶、河水33.4、26.1 nmol/L[34]氧氟沙星nanoMIP牛奶、河水55.0、2.7 nmol/L[34]四环素Fe3O4@CA@nanoMIP牛奶1.0 pg/mL5~100 pg/mL[31]四环素IA MAA MIP尿液、牛奶1.38×10-14 mol/L10-13~10-7 mol/L[32]红霉素nanoMIP/NIP0.40 μmol/L[36]青霉素MIP@AuNPs/NIP水、牛奶0.001 7 μg/L0.01~5.0 μg/L[29]青霉素GO@MIP水、牛奶0.021 ng/mL1~100 ng/mL[30]阿莫西林p(MAAM-VTMOS-TEOS)MIP/NIP缓冲液、自来水73 pmol/L[27]阿莫西林PHEMA-MAA MIP/NIP鸡蛋0.000 5 ng/mL0.1~10.0 ng/mL[28]诺氟沙星Fe3O4@nanoMIP牛奶8.73 pg/mL10~250 pg/mL[14]糖肽类抗生素nanoMIP/NIP牛奶4.1 ng/mL4.1~17.7 ng/mL[38]
磺胺类抗生素常被用作家畜的食品添加剂以增加产量,但其严重威胁人类生活中水和食物的安全,Kurç等[25]用滴铸涂覆的方法制备了可特异性识别磺胺甲恶唑的甲基丙烯酸-甲基丙烯酸羟乙酯-二甲基丙烯酸乙二醇酯聚合膜,该MIP-SPR 传感体系检测限低至0.0034 g/L。MIP-SPR 传感器在青霉素类抗生素如阿莫西林等检测中的应用较为广泛,Ayankojo 等[27]合成了对阿莫西林(amoxicillin,AMO)具有选择性的有机-无机杂化分子印迹膜,采用溶胶-凝胶法制备薄膜并用旋涂技术与SPR 传感器连接,可特异性检测缓冲液和自来水中的AMO 且最低检测限为73 pmol/L。Bereli 等[28]合成了阿莫西林(甲基丙烯酸羟乙酯-甲基丙烯酸)聚合膜应用于表面等离子共振传感器,已用于鸡蛋中AMO 的检测且检测限低至0.000 5 ng/mL。
nanoMIP-SPR 传感体系也是检测兽药残留常用的方法,Sullivan 等[34]利用固相分子印迹技术,合成了对环丙沙星具有选择性的高亲和力纳米粒子,在牛奶和河水中的检测限分别为66.8 nmol/L 和39.3 nmol/L。Luo 等[35]则是以原位光引发聚合法制备的纳米分子印迹聚合物膜为识别元件,实现对环丙沙星的选择性检测,检测限可至10-11 mol/L。Safran 等[29]制备的MIP-SPR传感体系可选择性地检测水溶液和牛奶中的青霉素G,其制备的半胱氨酸甲酯-金纳米粒子-N-甲基丙烯酰-L-苯丙氨酸甲酯(AuNPs@MIP)分子印迹纳米膜选择性是非印迹纳米膜的9.78 倍。Çelik 等[30]制备了甲基丙烯酸羟乙酯-氧化石墨烯-N-甲基丙烯酰-L-苯丙氨酸nanoMIP-SPR 传感器芯片,应用于牛奶样品中青霉素的检测,检测限低至0.021 ng/mL,并通过高效液相色谱验证了该体系检测准确性。
此外,Tang 等[26]报道了基于MIP-SPR 传感器的间接抑制免疫分析方法,并将其应用于磺胺甲恶唑的检测,采用原位聚合技术在柔性石英毛细管中合成了磺胺甲恶唑(sulfamethoxazole,SMX)分子印迹聚合物涂层,MIP 包被抗SMX 单克隆抗体与SMX 特异性结合,可实现SMX 的痕量检测。Altintas[38]首次通过计算机设计nanoMIP-SPR 芯片用于检测牛奶样品中的万古霉素,通过建模目标分子和每种单体分子之间相互作用可视化,从而筛选出与万古霉素最合适的功能单体,极大地减少了筛选时间,降低了试验成本。
生物毒素又称天然毒素,是动物、植物以及微生物产生的有毒物质,其种类繁多且复杂。目前,可通过SPR-MIP 检测的生物毒素主要包括黄曲霉毒素[5]、赭曲霉毒素[39-40]、展青霉素[41]、呕吐毒素[42]等真菌毒素以及细菌产生的内毒素[43-44]等(表3)。
表3 MIP-SPR 传感器在毒素残留检测中的应用
Table 3 Application of MIP-SPR sensors in the detection of toxin residues
目标物印迹膜类型基质检测限检测线性范围文献赭曲霉素AMIPPy0.01 mg/L0.05~0.5 mg/L[39]赭曲霉素Ap(HEMA-MAPA)MIP/NIP无花果干0.028 ng/mL0.1~20 ng/mL[40]内毒素甲基丙烯酸羟乙酯-N-甲基丙烯酰-(L)-组氨酸甲酯nanoMIP/NIP0.023 ng/mL0.5~100 ng/mL[44]内毒素nanoMIP(0.44±0.02)ng/mL[43]黄曲霉素AuNP@MIP/NIP花生、玉米1.04 pg/mL0~10 ng/mL[5]呕吐毒素MIPPy大于1 ng/mL0.1~100 ng/mL[42]展青霉素nanoMIP/NIP苹果0.011 nmol0.5~750 nmol[41]
Akgönüllü 等[5]建立了灵敏检测黄曲霉素B1(aflatoxin B1,AFB1)的SPR 传感体系,将AFB1 和N-甲基丙烯酰-L-苯丙氨酸分别作为模板分子和功能单体进行预复合,然后将采用Turkevich 方法[45]合成的纳米金分子印迹聚合物涂覆在SPR 金芯片表面,形成可特异性检测AFB1 的nanoMIP-SPR 传感体系,该传感体系检测限低至1.04 pg/mL。
MIP-SPR 传感器在制备印迹膜时可联用电化学方法,利用聚吡咯(polypyrrole,PPy)等高分子材料进行电化学聚合,在工作电极表面上形成PPy 薄膜。Yu 等[39]通过电化学聚合将分子印迹聚吡咯(molecularly imprinted polypyrrole,MIPPy) 膜与SPR 装置集成用于检测小麦和葡萄酒提取物中的赭曲霉素,并采用脉冲洗脱法对MIPPy 膜进行再生。Choi 等[42]通过电聚合吡咯在裸金芯片上制备了可特异性检测呕吐毒素的MIPPy膜,其检测限大于1 ng/mL,该体系为合成具有靶向选择性的传感元件提供了一种简单、快速的思路。
除与电化学聚合联用外,通过计算机模拟设计同样可以设计出检测灵敏、结合牢固的MIP 膜,且减少昂贵的分析物和模板使用。Altintas 等[43]利用计算模拟大肠杆菌内毒素和单体间相互作用,优选出衣康酸、甲基丙烯酸和丙烯酰胺作为功能单体,成功合成出表面带有可结合官能团的纳米芯片,且该体系检测限低至0.44 ng/mL。
除农兽药残留和生物毒素外,MIP-SPR 传感器还被应用到检测食品中其他有害物质,如重金属离子[12]、非法添加物[46-48]、致病菌[49-51]和有毒物质[52-60]等(表4)。
表4 MIP-SPR 传感器在其他有害物质残留检测中的应用
Table 4 Application of MIP-SPR sensors in the detection of other harmful substance residues
目标物印迹膜类型基质检测限检测线性范围文献双酚AMIP/NIP水、聚碳酸酯6.15×10-9、6.84×10-9 mol/L10-8~10-6 mol/L[58]双酚Ap(EGDMA-MAPA-VI)MIP/NIP超纯水、自来水、污水0.02、0.06、0.08 μg/L0.08~10、0.2~10、0.3~10 μg/L [59]L-苯丙氨酸2-羟乙基甲基丙烯酸基-甲基丙烯酰基-人工血浆0.008 5 μmol/L5~400 μmol/L[52]左苯丙氨酸MIP/NIP克伦特罗SPE@MIP/NIP猪尿液0.1 ng/L0.1~10 ng/L[47]苯并芘MIP/NIP水14.97 ng/L20~400 ng/mL[53]假单胞菌nanoMIP/NIP鸡里脊0.5×102 CFU/g102~104 CFU/mL[51]大肠杆菌AgNPs@MIP尿液0.57 CFU/mL1.5×10~1.5×106 CFU/mL[50]全氟辛酸盐POF@MIP/NIP水0.13 μg/L[60]粪肠球菌MIP海水1.05×102 CFU/mL2×104~108 CFU/mL[49]依托泊苷Ag@AuNPs@MIP/NIP尿液0.000 25 ng/mL0.001~1.00 ng/mL[54]组胺nanoMIP/NIP奶酪、金枪鱼罐头0.58 ng/mL0.001~10 μg/mL[56]组胺MIP/NIP鲤鱼25 μg/L25~1 000 μg/L[55]苏丹红ⅠMIP30 ng/mL50~400 ng/mL[46]Cd2+pHEMA MIP水0.5 μg/L1.0~50 μg/L[12]Cd2+nanoMIP水0.1 μg/L0.1~50 μg/L[12]Cd2+AuNPs@MIP水0.01 μg/L0.1~50 μg/L[12]孔雀石绿MIP/NIP河水、土壤8.832×10-11、1.546×10-10 mol/L8.0×10-10~10-8 mol/L[48]三聚氰胺MIP/NIP奶、奶粉5.64×10-11、6.26×10-11 mol/L10-10~10-8 mol/L[48]糠醛POF@MIP/NIP0.03 mg/L[57]
Bakhshpour 等[12]对基于3 种不同传感芯片聚甲基丙烯酸羟乙酯薄膜、聚合物纳米粒子膜和金纳米粒子膜测镉离子(Cd2+)的MIP-SPR 传感体系进行了比对分析,发现Poly-NPs 和AuNPs 传感体系检测限低至0.01 μg/L,显著增强了SPR 传感器信号强度,为使用纳米颗粒检测金属离子提供了一种新策略。
目前采用MIP-SPR 传感体系可检测的非法添加物包括孔雀石绿[48]、三聚氰胺[48]和苏丹红[46]等。Tang[47]等报道了基于MIP-SPR 传感体系的间接抑制免疫分析方法,以去氧肾上腺素为虚拟模板,以1-烯丙基-3-乙基咪唑溴化物为助功能单体合成的MIP 可特异性识别痕量克伦特罗并用于其检测。Xu[46]等通过表面引发的原位聚合的方法在裸金SPR 芯片上制备了厚度为(75±5)nm 的nanoMIP 用于特异性检测苏丹染料,检测限低至30 ng/mL,具有快速吸附和解吸附的特点。
食品或者水源中可能存在由直接或间接方式引入的食源致病菌,一旦摄入人体便存在食物中毒等隐患,而制备纳米分子印迹SPR 传感器芯片可准确在线检测致病菌,目前利用该方法可检测的食源致病菌包括粪肠球菌[49]、大肠杆菌[50]和假单胞菌等[51]。Erdem 等[49]报道了一种MIP-SPR 特异性检测粪肠球菌的方法,采用微乳液法制备粪肠球菌纳米颗粒并应用SPR 进行检测,其检测范围为2×104~2×108 CFU/mL,该传感体系对大肠杆菌、枯草芽孢杆菌和金黄色葡萄球菌检测具有高度选择性。
食品中存在的其他有害物质如食品加工的副产物,食品加工过程产生的污染物,农畜产品机体产生的有毒有害物质等亦可通过MIP-SPR 传感器进行检测。例如,可采用模板分子-功能单体-引发剂体系检测苯并芘[53]、双酚A[58]以及组胺[55]等。采用纳米MIPSPR 传感器用于有害物质的检测,Shaikh 等[59]制备了聚乙二醇二甲基丙烯酸酯-N-甲基丙烯酰-L-苯丙氨酸-乙烯基咪唑分子印迹聚合膜检测双酚A。Rahtuvanolu 等[56]利用微乳液法制备了纳米印迹膜检测组胺。Cennamo 等[60]和Zeni 等[57]报道的基于D 形塑料光纤(plastic optical fiber,POF)面等离子共振传感体系,即MIP 受体被沉积在一个POF 上,上面覆盖着光刻胶缓冲层和一层金薄膜,该体系可分别特异性检测全氟辛酸盐和糠醛。
经过几十年的发展与应用,MIP-SPR 传感体系作为一种新型化学传感器取得了前所未有的进展,给食品安全检测技术研究领域带来了新的机遇,其检测方法得到了进一步的发展。从模板分子-功能单体体系到与纳米技术和电化学技术联用,MIP-SPR 传感体系具有检测灵敏度高、选择性强、检测迅速以及操作简单等诸多优点,但在实际应用过程中仍面临重大挑战,存在一定的局限性,包括检测目标物容易受干扰、应用范围不广、成本较高和分析物单一等问题,且MIP-SPR 传感器在食品安全检测中应用的商业化体系开发较少,大多数应用仍停留在实验室研究阶段,缩小实验室研究和实际应用之间的差距是未来研究的焦点。因此在今后的研究中,可着力于以下5 个方面:(1)设计新型的防污材料,用于消除表面等离子共振芯片表面的污染,以提高识别元件的固定和特异性结合,进而提高MIP-SPR 传感器可利用次数和精确度;(2)开发经济和小型化便携设备,用于从实验台到现场检测;(3) 加强MIP-SPR 传感器与其他传感器或分析方法的联合应用,以获得大量样品的高度可靠的结果;(4)创新芯片材料,引入可重复使用的传感器芯片,以降低检测成本;(5)发展多通道方法,满足多种分析物同时检测的要求。相信随着纳米技术、膜技术、电化学技术和光纤技术等高新技术的集成与应用,必将进一步提高MIP-SPR 传感器的分析效率和适用性,从而使SPR 技术在食品安全领域发挥更大的作用。
[1] 窦博鑫, 张云亮, 王艳, 等. 生物传感器在食品检测领域的应用研究进展[J]. 食品安全质量检测学报, 2022, 13(3): 845-851.DOU Boxin, ZHANG Yunliang, WANG Yan, et al. Advances in the application of biosensors in the field of food detection[J]. Journal of Food Safety & Quality, 2022, 13(3): 845-851.
[2] 徐豪, 李洋, 张廷廷, 等. 色谱分析法在葡萄酒农药残留检测中的应用进展[J]. 食品安全质量检测学报, 2020, 11(6): 1695-1701.XU Hao, LI Yang, ZHANG Tingting, et al. Application of chromatography in the detection of pesticide residues in wine[J]. Journal of Food Safety & Quality, 2020, 11(6): 1695-1701.
[3] 苏丹, 吴天琪, 杨雨, 等. 量子点标记免疫分析技术在食品安全检测中的应用现状[J]. 食品研究与开发, 2022, 43(10): 210-216.SU Dan, WU Tianqi, YANG Yu, et al. Application of quantum dotsbased immunoassay in food safety detection[J]. Food Research and Development, 2022, 43(10): 210-216.
[4] 孙坤秀, 胡志刚, 成玉梁, 等. 时间分辨荧光分析技术在食品污染物检测中的应用进展[J]. 食品研究与开发, 2021, 42(13): 214-218.SUN Kunxiu, HU Zhigang, CHENG Yuliang, et al. Application of time-resolved fluorescence analysis in the detection of food contamination[J]. Food Research and Development, 2021, 42(13): 214-218.
[5] AKGÖNÜLLÜ S, YAVUZ H, DENIZLI A. SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1[J]. Talanta, 2020, 219: 121219.
[6] REZABAKHSH A, RAHBARGHAZI R, FATHI F. Surface plasmon resonance biosensors for detection of Alzheimer's biomarkers; An effectivestep in early and accurate diagnosis[J]. Biosensors and Bioelectronics, 2020, 167: 112511.
[7] 黄昭, 曹亚男, 李跑, 等. 表面等离子体共振传感器在食品安全检测中的应用[J]. 食品科学, 2020, 41(13): 276-282.HUANG Zhao, CAO Yanan, LI Pao, et al. Application of surface plasma resonance sensor in food safety inspection: A review[J]. Food Science, 2020, 41(13): 276-282.
[8] 任涛涛, 陈金嫒, 靳雨婷, 等. 分子印迹技术在食品腐败菌与致病微生物检测中的应用[J]. 中国食品学报, 2022, 22(6): 435-444.REN Taotao, Chen Jin'ai, JIN Yuting, et al. Molecular imprinting technology in detection of food spoilage bacterial and pathogenic microorganism[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(6): 435-444.
[9] HU T L, CHEN R, WANG Q, et al. Recent advances and applications of molecularly imprinted polymers in solid -phase extraction for real sample analysis[J]. Journal of Separation Science, 2021, 44(1): 274-309.
[10] MAHMOUDPOUR M, TORBATI M, MOUSAVI M M, et al. Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects[J]. TrAC Trends in Analytical Chemistry, 2020, 129: 115943.
[11] PAN J M, CHEN W, MA Y, et al. Molecularly imprinted polymers as receptor mimics for selective cell recognition[J]. Chemical Society Reviews, 2018, 47(15): 5574-5587.
[12] BAKHSHPOUR M, DENIZLI A. Highly sensitive detection of Cd(Ⅱ)ions using ion-imprinted surface plasmon resonance sensors[J]. Microchemical Journal, 2020, 159: 105572.
[13] LAI E P C, FAFARA A, VANDERNOOT V A, et al. Surface plasmon resonance sensors using molecularly imprinted polymers for sorbent assay of theophylline, caffeine, and×anthine[J]. Canadian Journal of Chemistry, 1998, 76(3): 265-273.
[14] 黄昭. 磁分子印迹耦合SPR 检测牛奶中诺氟沙星残留的研究[D]. 长沙: 湖南农业大学, 2020.HUANG Zhao. A research of magnetic molecularly imprinted polymers nanoparticles coupled SPR sensor for the determination of norfloxacin in milk[D]. Changsha: Hunan Agricultural University, 2020.
[15] CAKIR O, BAKHSHPOUR M, YILMAZ F, et al. Novel QCM and SPR sensors based on molecular imprinting for highly sensitive and selective detection of 2, 4-dichlorophenoxyacetic acid in apple samples[J]. Materials Science and Engineering: C, 2019, 102: 483-491.
[16] SAYLAN Y, AKGÖNÜLLÜ S, ÇIMEN D, et al. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides[J]. Sensors and Actuators B: Chemical, 2017, 241: 446-454.
[17] YıLMAZ E, ÖZGÜR E, BERELI N, et al. Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection[J]. Materials Science and Engineering: C, 2017, 73: 603-610.
[18] AGRAWAL H, SHRIVASTAV A M, GUPTA B D. Surface plasmon resonance based optical fiber sensor for atrazine detection using molecular imprinting technique[J]. Sensors and Actuators B: Chemical, 2016, 227: 204-211.
[19] ÇAKıR O, BAKHSHPOUR M, GÖKTÜRK I, et al. Sensitive and selective detection of amitrole based on molecularly imprinted nanosensor[J]. Journal of Molecular Recognition, 2021, 34(11): e2929.
[20] YAO G H, LIANG R P, HUANG C F, et al. Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition[J]. Analytical Chemistry, 2013,85(24): 11944-11951.
[21] SHRIVASTAV A M, USHA S P, GUPTA B D. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting[J]. Biosensors and Bioelectronics, 2016, 79: 150-157.
[22] TAN Y, AHMAD I, WEI T X. Detection of parathion methyl using a surface plasmon resonance sensor combined with molecularly imprinted films[J]. Chinese Chemical Letters, 2015, 26(6): 797-800.
[23] ÇAKıR O, BAYSAL Z. Pesticide analysis with molecularly imprinted nanofilms using surface plasmon resonance sensor and LC-MS/MS: Comparative study for environmental water samples[J]. Sensors and Actuators B: Chemical, 2019, 297: 126764.
[24] CHEN B, CHONG D, CHENG X, et al. Surface plasmon resonance sensor for detection of parathion methyl in water[J]. Malaysian Journal of Analytical Science, 2017, 21(6): 1373-1379.
[25] KURÇ Ö, TÜRKMEN D. Molecularly imprinted polymers based surface plasmon resonance sensor for sulfamethoxazole detection[J].Photonic Sensors, 2022, 12(4): 220417.
[26] TANG P P, LUO Z F, CAI J B, et al. An indirect inhibitive immunoassay for detection of low concentration sulfamethoxazole in aqueous solution[J]. Chinese Journal of Analytical Chemistry, 2010,38(7): 1019-1022.
[27] AYANKOJO A G, REUT J, ÖPIK A, et al. Hybrid molecularly imprinted polymer for amoxicillin detection[J]. Biosensors and Bioelectronics, 2018, 118: 102-107.
[28] BERELI N, ÇIMEN D, HÜSEYNLI S, et al. Detection of amoxicillin residues in egg extract with a molecularly imprinted polymer on gold microchip using surface plasmon resonance and quartz crystal microbalance methods[J]. Journal of Food Science, 2020, 85(12):4152-4160.
[29] SAFRAN V, GÖKTÜRK I, BAKHSHPOUR M, et al. Development of molecularly imprinted polymer-based optical sensor for the sensitive penicillin G detection in milk[J]. ChemistrySelect, 2021, 6(43):11865-11875.
[30] ÇELIK O, SAYLAN Y, GÖKTÜRK I, et al. A surface plasmon resonance sensor with synthetic receptors decorated on graphene oxide for selective detection of benzylpenicillin[J]. Talanta, 2023, 253:123939.
[31] GAO W R, LI P, QIN S, et al. A highly sensitive tetracycline sensor based on a combination of magnetic molecularly imprinted polymer nanoparticlesandsurfaceplasmonresonancedetection[J].Microchimica Acta, 2019, 186(9): 637.
[32] NAWAZ T, AHMAD M, YU J Y, et al. A recyclable tetracycline imprinted polymeric SPR sensor: In synergy with itaconic acid and methacrylic acid[J]. New Journal of Chemistry, 2021, 45(6): 3102-3111.
[33] SARI E, ÜZEK R, DUMAN M, et al. Detection of ciprofloxacin through surface plasmon resonance nanosensor with specific recognition sites[J]. Journal of Biomaterials Science, Polymer Edition, 2018,29(11): 1302-1318.
[34] SULLIVAN M V, HENDERSON A, HAND R A, et al. A molecularly imprinted polymer nanoparticle -based surface plasmon resonance sensor platform for antibiotic detection in river water and milk[J].Analytical and Bioanalytical Chemistry, 2022, 414(12): 3687-3696.
[35] LUO Q H, YU N, SHI C F, et al. Surface plasmon resonance sensor for antibiotics detection based on photo -initiated polymerization molecularly imprinted array[J]. Talanta, 2016, 161: 797-803.
[36] SARI E, ÜZEK R, DUMAN M, et al. Fabrication of surface plasmon resonance nanosensor for the selective determination of erythromycin via molecular imprinted nanoparticles[J]. Talanta, 2016, 150: 607-614.
[37] ZHANG L L, ZHU C C, CHEN C B, et al. Determination of kanamycin using a molecularly imprinted SPR sensor[J]. Food Chemistry, 2018,266: 170-174.
[38] ALTINTAS Z. Surface plasmon resonance based sensor for the detection of glycopeptide antibiotics in milk using rationally designed nanoMIPs[J]. Scientific Reports, 2018, 8: 11222.
[39] YU J C C, LAI E P C. Interaction of ochratoxin A with molecularly imprinted polypyrrole film on surface plasmon resonance sensor[J].Reactive and Functional Polymers, 2005, 63(3): 171-176.
[40] AKGÖNÜLLÜ S, ARMUTCU C, DENIZLI A. Molecularly imprinted polymer film based plasmonic sensors for detection of ochratoxin A in dried fig[J]. Polymer Bulletin, 2022, 79(6): 4049-4067.
[41] ÇIMEN D, BERELI N, DENIZLI A. Patulin imprinted nanoparticles decorated surface plasmon resonance chips for patulin detection[J].Photonic Sensors, 2022, 12(2): 117-129.
[42] CHOI S W, CHANG H J, LEE N R, et al. Detection of mycoestrogen Zearalenone by a molecularly imprinted polypyrrole-based surface plasmon resonance (SPR) sensor[J]. Journal of Agricultural and Food Chemistry, 2009, 57(4): 1113-1118.
[43] ALTINTAS Z, ABDIN M J, TOTHILL A M, et al. Ultrasensitive detection of endotoxins using computationally designed nanoMIPs[J].Analytica Chimica Acta, 2016, 935: 239-248.
[44] ÇIMEN D, ASLıYÜCE S, TANALP T D, et al. Molecularly imprinted nanofilm s for endotoxin detection using an surface plasmon resonance sensor[J]. Analytical Biochemistry, 2021, 632: 114221.
[45] AKGÖNÜLLÜ S, YAVUZ H, DENIZLI A. Preparation of imprinted cryogel cartridge for chiral separation ofl-phenylalanine[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(4): 800-807.
[46] XU X Y, TIAN X G, CAI L G, et al. Molecularly imprinted polymer based surface plasmon resonance sensors for detection of Sudan dyes[J]. Analytical Methods, 2014, 6(11): 3751-3757.
[47] TANG P P, HUO J C, ZHANG H P, et al. Surface plasmon resonance-based inhibitive immunoassay coupled with dummy template molecularly imprinted polymer solid phase extraction for on -line analysis of trace clenbuterol[J]. Journal of the Chinese Chemical Society, 2014, 61(12): 1357-1364.
[48] 李洁. 孔雀石绿和三聚氰胺分子印迹SPR 传感器的构建及分析应用[D]. 泰安: 山东农业大学, 2014.LI Jie. Construction and analytical application of malachite green and melamine molecularly imprinted SPR sensors[D]. Tai'an: Shandong Agricultural University, 2014.
[49] ERDEM Ö, SAYLAN Y, CIHANGIR N, et al. Molecularly imprinted nanoparticles based plasmonic sensors for real-time Enterococcus faecalis detection[J]. Biosensors and Bioelectronics, 2019, 126: 608-614.
[50] ÖZGÜR E, TOPÇU A A, YıLMAZ E, et al. Surface plasmon resonance based biomimetic sensor for urinary tract infections[J]. Talanta, 2020, 212: 120778.
[51] TÜRKMEN D, YıLMAZ T, BAKHSHPOUR M, et al. An alternative approach for bacterial growth control: Pseudomonas spp. imprinted polymer-based surface plasmon resonance sensor[J]. IEEE Sensors Journal, 2022, 22(4): 3001-3008.
[52] ÇIMEN D, BERELI N, DENIZLI A. Surface plasmon resonance based on molecularly imprinted polymeric film for l-phenylalanine detection[J]. Biosensors, 2021, 11(1): 21.
[53] ÇORMAN M E, ARMUTCU C, KARASU T, et al. Highly selective benzo [a]Pyrene detection even under competitive conditions with molecularlyimprintedsurfaceplasmon resonance sensor[J]. Polycyclic Aromatic Compounds, 2023, 43(5): 3896-3909.
[54] ÖZKAN A, ATAR N, YOLA M L. Enhanced surface plasmon resonance (SPR) signals based on immobilization of core-shell nanoparticles incorporated boron nitride nanosheets: Development of molecularly imprinted SPR nanosensor for anticancer drug, etoposide[J].Biosensors and Bioelectronics, 2019, 130: 293-298.
[55] JIANG S Y, PENG Y, NING B A, et al. Surface plasmon resonance sensor based on molecularly imprinted polymer film for detection of histamine[J]. Sensors and Actuators B: Chemical, 2015, 221: 15-21.
[56] RAHTUVANOLUA,AKGÖNÜLLÜS,KARACANS,etal.Biomimetic nanoparticles based surface plasmon resonance biosensors for histamine detection in foods[J]. ChemistrySelect, 2020, 5(19): 5683-5692.
[57] ZENI L, PESAVENTO M, MARCHETTI S, et al. [INVITED]Slab plasmonic platforms combined with Plastic Optical Fibers and Molecularly Imprinted Polymers for chemical sensing[J]. Optics &Laser Technology, 2018, 107: 484-490.
[58] ZHU C C, ZHANG L L, CHEN C B, et al. Determination of bisphenol A using a molecularly imprinted polymer surface plasmon resonance sensor[J]. Analytical Letters, 2015, 48(10): 1537-1550.
[59] SHAIKH H, SENER G, MEMON N, et al. Molecularly imprinted surface plasmon resonance (SPR) based sensing of bisphenol A for its selective detection in aqueous systems[J]. Analytical Methods,2015, 7(11): 4661-4670.
[60] CENNAMO N, D'AGOSTINO G, PORTO G, et al. A molecularly imprinted polymer on a plasmonic plastic optical fiber to detect perfluorinated compounds in water[J]. Sensors, 2018, 18(6): 1836.
Application of Surface Plasmon Resonance Sensors Based on Molecularly Imprinted Polymers in Food Safety Detection
闫枫蕾,娄婷婷,王淞,等. 基于分子印迹的表面等离子共振传感器在食品安全检测中的应用[J]. 食品研究与开发,2023,44(18):205-211.
YAN Fenglei,LOU Tingting,WANG Song,et al. Application of Surface Plasmon Resonance Sensors Based on Molecularly Imprinted Polymers in Food Safety Detection[J]. Food Research and Development,2023,44(18):205-211.