我国是世界上最大的小麦生产国和消费国,每年小麦产量超过1 亿吨,经生产加工后产生约2 000 万t麸皮副产物[1-2]。目前小麦麸皮多应用于酿酒、制醋、饲料原料等加工领域,而较少用于深加工,因此附加值较低[3-4]。通过对麸皮进行改性预处理及微生物发酵,能有效改变麸皮的营养组成及活性成分,延长小麦加工产业链,实现对小麦副产品的二次利用,具有重要的经济和社会效益。本文就不同改性方式、不同菌种发酵麸皮,对其营养活性成分含量影响的相关研究进行论述总结。
小麦麸皮主要由皮层和糊粉层两部分组成,是面粉加工过程中的主要副产物[5],占小麦籽粒的22%~25%。麸皮蛋白主要分为麦谷蛋白和麦胶蛋白,含有人体所需的8 种必需氨基酸,在基本氨基酸中,又以谷氨酸为主[6];酚类化合物和活性多糖是小麦麸皮中的两大活性物质,酚类物质主要存在于麦麸皮层中,包括酚酸、类黄酮和木酚素等,具有较强的抗氧化活性[7]。多糖同样具有很多生物活性,包括抑菌[8]、抗氧化[9-11]、免疫调节[12-14]和肠道益生等[15-16]。膳食纤维作为小麦麸皮里的主要成分,约占其比重的35%~50%,膳食纤维除可以促进肠道蠕动、防止便秘、减少有害物质与肠壁接触时间、降低患病风险外,还可以减少消化过程中对脂类的吸收,从而降低血液中的胆固醇和甘油三脂,起到预防高血压和心脑血管疾病的作用。
早期人们对于麸皮所具有的营养价值及功能认识不足,直接将其作为动物饲料和一些产品的原材料[17],麸皮的价值未得到充分的开发利用,造成了资源的严重浪费。
任顺成等[18]的研究发现,麦麸经挤压膨化处理后,总膳食纤维和可溶性膳食纤维含量分别提高了11.69%和1.16%,说明挤压膨化后的麦麸其可食性、功能性以及营养性会得到明显改善。Zhang 等[19]通过超微粉碎得到不同粒径燕麦麸皮,经有机试剂提取后发现其多酚含量和黄酮含量均有明显差异,其中游离多酚和游离黄酮随麸皮粒径的减小含量明显增加,分析这是由于游离多酚可以直接被有机溶剂提取,麸皮粒径越小,与有机溶剂的接触面积越大,有效增大了提取率。
张瑞婷[20]在2.5 MPa 下蒸汽爆破处理小麦麸皮30 s后,麦麸中的游离阿魏酸和结合阿魏酸的含量均有所增加,此时总酚含量最高,为28 mg/g,是未处理时的3.057 倍,此时抗氧化活性也达到最大,表明蒸汽爆破处理可以明显提高麦麸中的总酚含量及抗氧化成分。高海飞[21]以小麦麸皮为处理原料,采用汽爆预处理技术及耦合超微粉碎技术,研究发现小麦麸皮粉的功能特性包括水合性和吸附性,小麦麸皮粉抗氧化成分含量和抗氧化性明显提高,其功能营养价值和感官品质得到提升,这对于小麦麸皮在食品行业的应用和开发具有一定的指导意义。
吕春月等[22]通过微波联合酶解的处理方式改良小麦麸皮,粗纤维含量降低至2.79%,还原糖含量上升至25.15 mg/mL,表明微波联合酶解可以破坏分子间的糖苷键,使小麦麸皮细胞壁中纤维素、半纤维素降解,生成小分子的还原糖,明显改善了小麦麸皮的食用品质。李治[23]向小麦麸皮中添加1∶2(质量比)纤维素酶与木聚糖酶,添加总量为麦麸质量的0.3%,料液比1∶10(g/mL),pH4.5,55 ℃下酶解5 h,发现麦麸的持水力、膨胀力和持油力均得到提高,且持油力提升最明显,同时有效降低了麦麸的胆酸钠吸附能力以及阳离子交换能力,该工艺有利于充分利用小麦麸皮,提高产品的加工利用率。
小麦麸皮经微生物发酵后,可将麸皮中的抗营养因子降解,转化为易消化吸收并且无毒害的麸皮发酵产物,从而提高微量元素的生物利用率,改善含麸产品的工艺、感官和营养特性[24-25]。研究发现,经微生物发酵可使麸皮内的束缚型酚酸得到释放,总酚及阿魏酸含量得到提高[26],发酵液中多糖和复合成分增多[27]。多糖和多酚作为麦麸中最主要的生理活性物质,对机体的健康发挥着至关重要的作用,通过微生物发酵提高其含量,对减少资源浪费,提高其附加价值具有重要意义。同时随着饲料中促生长类抗生素的逐渐禁用,开发营养平衡、绿色饲料成为一种趋势,使得微生物发酵技术备受食品业和畜牧业的青睐。
通过VOSviewer 文献检索软件,以“小麦麸皮、发酵”为关键词,在Web of Science 检索最近五年的文献发现,目前麸皮发酵的研究热点主要集中于利用黑曲霉和乳酸菌进行固态发酵。固态发酵按固液比又可分两种:固液比较小,可以将微生物培养在潮湿的底物上,按照规定的条件进行发酵;第二种为固液比例比较大,原料一般利用价值较高,如麦麸、薯粉等[28]。Zhao等[29]采用酵母和乳酸菌对麦麸进行固态发酵后总膳食纤维和可溶性膳食纤维增加,超过20%的植酸被降解。胡博涵[30]利用微生物对小麦麸皮进行发酵,可充分将麸皮中的束缚型酚酸释放,在提高麦麸的总酚和阿魏酸含量的同时,其抗氧化活性也得到了相应的提高。周聪[31]利用微生物发酵得到紫麦麸皮总酚含量比未发酵前提高了两倍,同时提高了紫麦麸皮的抗氧化活性,表明固态发酵是改善麦麸品质的有效途径。
目前国内外用于麸皮发酵的微生物菌种主要有酵母菌、乳酸菌、枯草芽孢杆菌、霉菌等。发酵生产中,选取不同的菌种,发酵产物中的成分含量会有所不同,见表1。
表1 不同菌种发酵对麸皮营养物质的改善情况
Table 1 Improvement of nutrients in bran by fermentation with different strains
菌种营养物质及功能改善情况文献来源酵母菌植酸明显降低,可溶性阿拉伯木聚糖和总酚含量明显增加;蛋白质明显增加;淀粉和膳食纤维下降[32-33]乳酸菌增加阿拉伯木聚糖和酚酸含量,提高麸皮抗氧化活性[34]黑曲霉去淀粉麦麸中阿魏酸酯酶产量提高60.6%的阿魏酸得到释放[35][36]枯草芽孢杆菌 降解麸皮中的大分子蛋白质、易消化吸收的小肽、氨基酸等明显提高发酵麸皮中的真蛋白含量;提高麸皮多酚含量[37][36]
由表1 可知,在菌种选取上,除以单菌进行的发酵外,还可利用复合菌发酵麸皮,通过各菌种之间的协作关系,有助于提高发酵产物的品质。
麸皮经酵母菌或乳酸菌发酵后,其营养成分得到改善,植酸含量降低,可溶性阿拉伯木聚糖、酚酸含量的提高,使得小麦麸皮的抗氧化活性得到增强[38],这是由于发酵过程中会产生高活性的解聚酶,破坏结合态酚酸与阿拉伯木聚糖之间的酯键,进而释放细胞壁中的结合态酚酸和阿拉伯木聚糖。崔晨晓等[32]利用即发活性干酵母,固态发酵小麦麸皮12 h 后,多酚含量出现明显的升高,后经优化35 ℃,发酵24 h 后,多酚含量可达4.854 mg GAE/g,较未发酵麸皮增加了49.4%。研究发现,酵母菌发酵的麸皮作为原料回添到面包中,对改善面包口感、延长保质期具有重要作用。
小麦麸皮经乳酸菌发酵,产物中的氨基酸,维生素和有机酸等有所增加,改善了发酵产物的风味[39]。Wang 等[34]用植物乳杆菌423 发酵小麦麸皮后气味丰度明显增强,其中硫化物和芳香物质的气味增加最为明显。将麸皮发酵液中纯化得到的抗氧化组分,作用于人脐静脉内皮细胞,显示出较强的活性氧清除能力,研究表明,植物乳杆菌423 发酵小麦麸皮在清除羟自由基活性中发挥重要作用。
Coda 等[40]利用乳酸菌发酵小麦麸皮24 h,发现麸皮中叶酸、酚酸、多酚的生物利用度得到提高。王太军[41]利用乳酸菌对麸皮进行发酵,小麦麸皮中可溶性阿拉伯木聚糖、总酚含量均有明显增加,植酸含量下降,总膳食纤维含量下降,可溶性膳食纤维比例提高,说明乳酸菌发酵可以提高麸皮的加工特性和营养素的含量,可为相关麸皮食品的开发提供理论参考。
Anné 等[42]利用黑曲霉、米曲霉、泡盛曲霉,发酵小麦麸皮后,阿魏酸较未发酵麸皮含量明显升高,分别提高了234.5%、326.9%、1 414.9%。赵浩源等[35]选取黑曲霉菌株TRIIM 3.00954,以麦麸∶甘蔗渣=2∶1(质量比)混合作为基质,发酵产阿魏酸酯酶,之后与木聚糖酶联合作用于已去除淀粉的麸皮,可将麦麸中60.6%的阿魏酸释放出来。分析这是由于阿魏酸酯酶与木聚糖酶共同作用于细胞壁,同时打断阿魏酸酯键和糖苷键,使阿魏酸得以更好释放,为工业化提取阿魏酸提供了有效途径。
麸皮进行复合发酵时,菌种的添加比例对发酵效果会产生较大影响,安晓萍等[43]以酿酒酵母6.73%、枯草芽孢杆菌3.27%的接种量,在料水比1∶1(g/mL),麸皮、豆粕粉和玉米粉组成的培养基中发酵。最终发酵麸皮中的多糖含量可达55.92 mg/g。张福娟[44]以黑曲霉和热带假丝酵母作为发酵菌种,菌种配比为2∶1,麸皮含水量70%,在35 ℃下发酵72 h。发酵结束后蛋白质含量达24.86%,粗纤维含量降低至3.74%,表明恰当的菌种配比有助于提高菌种间的协同发酵,改善发酵产物的品质[45]。
任雪荣等[36]利用枯草芽孢杆菌和酿酒酵母在37 ℃、料水比1∶1(g/mL)的条件下,混合固态发酵麸皮84 h。发酵完成后测定水溶性麸皮多酚含量,结果表明多酚含量较发酵前提高了294.41%。由此可见,微生物复合发酵对提高水溶性麸皮多酚含量具有明显作用。
李翔宇等[37]利用枯草芽孢杆菌和康氏木霉混菌发酵麸皮时发现,若枯草芽孢杆菌的比例较低,则发酵产物中的粗蛋白含量高于单一菌种发酵;若比例相反,则发酵产物中的粗蛋白含量会有所下降。经分析可能是枯草芽孢杆菌含量较多时抑制了康氏木霉的生长,进而对发酵体系中的菌种代谢活动产生了影响。因此,在发酵后期加入枯草芽孢杆菌,不仅可以增加益生菌的含量,还能避免菌种间的相互抑制。
近年来,微生物法发酵处理麸皮技术得到广泛应用,与传统方法相比,该方法成本及能耗较低,操作简单,反应条件温和,无需添加任何化学物质,不受设备限制且转化率较高,避免了传统有机溶剂提取时有毒物质的残留,安全性较高[46]。在发酵过程中,活性物质可通过微生物的代谢而产生,也可以依赖微生物的代谢破坏活性物质与基质的结合,从而释放活性物质,这使得麸皮中多种抗氧化活性物质得到提高,表明微生物发酵有着广阔的发展前景。生物转化产物中的膳食纤维,对于高血压及结肠癌、直肠癌等,具有一定的治疗和预防作用[46],可用于开发主食性谷物制品[47],以满足消费者的营养需求;麸皮发酵产物中含有大量的生物活性物质——抗氧化物质[48-49],作为抗氧化成分,阿魏酸的抗氧化活性最强,含量最多[50]。阿魏酸及衍生物在增强化妆品抗氧化性能、提高食品抗氧化能力和抑制腐败菌生长等方面应用较为广泛。多糖具有抗氧化、降血糖和肝保护活性[51],可直接作用于肿瘤细胞,抑制其生长,诱导细胞凋亡等。这主要是由于抗氧化物质能直接作用于自由基,清除多余不配对电子或间接消耗掉容易生成自由基的物质,进而对机体健康进行保护[52]。
综上所述,通过对麸皮进行改性及生物转化,可有效提高麸皮中的营养活性成分含量,延长小麦加工产业链,提高其价值链。今后对于麸皮的研究重点将主要集中于以下几个方面:1)多方式联用对麸皮进行改性处理,改善麸皮营养价值及感官品质;2)发酵菌种选取的问题,菌种的安全性是一切的前提;3)复合菌种发酵,对不同菌种的发酵产物进行营养评估,选取合适的微生物菌种及组合,探究最适作用条件,这对后期的发酵生产,提高其附加价值具有重要意义;4)微生物发酵提取技术的改进,针对特定的发酵产物,所需发酵条件需进一步优化;5)通过对小麦麸皮中多酚,多糖的进一步研究,为后期开发设计功能性食品及医药的奠定理论基础。
[1] WU X J,LI F,WU W.Effects of rice bran rancidity on the oxidation and structural characteristics of rice bran protein[J].LWT-Food Science and Technology,2020,120:108943.
[2] KATILEVICIUTE A,PLAKYS G,BUDREVICIUTE A,et al.A sight to wheat bran: High value-added products[J].Biomolecules,2019,9(12):887.
[3] CHENG W,SUN Y J,FAN M C,et al.Wheat bran,as the resource of dietary fiber: A review[J].Critical Reviews in Food Science and Nutrition,2022,62(26):7269-7281.
[4] YE G D,WU Y N,WANG L P,et al.Comparison of six modification methods on the chemical composition,functional properties and antioxidant capacity of wheat bran[J].LWT-Food Science and Technology,2021,149:111996.
[5] NAVROTSKYI S,GUO G,BAENZIGER P S,et al.Impact of wheat bran physical properties and chemical composition on whole grain flour mixing and baking properties[J].Journal of Cereal Science,2019,89:102790.
[6] 尹志娜.小麦麸皮固态发酵过程中活性成分释放的机理研究[D].广州:华南理工大学,2018.YIN Zhina.Study on mechanism of active component released by solid-state fermentation of wheat bran[D].Guangzhou:South China University of Technology,2018.
[7] GHAMRY M,ZHAO W,LI L.Impact of Lactobacillus apis on the antioxidant activity,phytic acid degradation,nutraceutical value and flavor properties of fermented wheat bran,compared to Saccharomyces cerevisiae and Lactobacillus plantarum[J].Food Research International(Ottawa,Ont),2023,163:112142.
[8] SHANG X L,LIU C Y,DONG H Y,et al.Extraction,purification,structural characterization,and antioxidant activity of polysaccharides from Wheat Bran[J].Journal of Molecular Structure,2021,1233:130096.
[9] LÓPEZ-PEREA P,GUZMÁN-ORTIZ F A,ROMÁN-GUTIÉRREZ A D,et al.Bioactive compounds and antioxidant activity of wheat bran and barley husk in the extracts with different polarity[J].International Journal of Food Properties,2019,22(1):646-658.
[10] WANG H X,SUN H Y,ZHANG P Z,et al.Effects of processing on the phenolic contents,antioxidant activity and volatile profile of wheat bran tea[J].International Journal of Food Science&Technology,2019,54(12):3156-3165.
[11] CHEN Q Y,WANG R F,WANG Y,et al.Characterization and antioxidant activity of wheat bran polysaccharides modified by Saccharomyces cerevisiae and Bacillus subtilis fermentation[J].Journal of Cereal Science,2021,97:103157.
[12] HU S Q,LI Y R,NIE C L,et al.Structure and pro-inflammatory activities of bran polysaccharides from a novel wheat kernel[J].Journal of Food Biochemistry,2022,46(1):e14008.
[13] CAO R A,JI R X,TABARSA M,et al.Extraction,structural elucidation and immunostimulating properties of water-soluble polysaccharides from wheat bran[J].Journal of Food Biochemistry,2020,44(9):e13364.
[14] WANG R F,WANG Y,ZHANG J,et al.The effects of dietary fermented wheat bran polysaccharides on mucosal and serum immune parameters,hepatopancreas antioxidant indicators,and immune-related gene expression of common carp(Cyprinus carpio)juveniles[J].Aquaculture International,2022,30(4):1835-1853.
[15] 刘丽娅,赵梦丽,钟葵,等.小麦麸皮阿拉伯木聚糖体外益生活性研究[J].中国粮油学报,2016,31(10):1-5,30.LIU Liya,ZHAO Mengli,ZHONG Kui,et al.In vitro prebiotic activity of Arabinoxylan from wheat bran[J].Journal of the Chinese Cereals and Oils Association,2016,31(10):1-5,30.
[16] CHEN Q Y,WANG Y,YIN N,et al.Polysaccharides from fermented wheat bran enhanced the growth performance of zebrafish(Danio rerio)through improving gut microflora and antioxidant status[J].Aquaculture Reports,2022,25:101188.
[17] WANG L,MA Z Q,DU F,et al.Feruloyl esterase from the edible mushroom Panus giganteus:A potential dietary supplement[J].Journal of Agricultural and Food Chemistry,2014,62(31):7822-7827.
[18] 任顺成,王凤雯,李丹.小麦麸皮挤压膨化工艺研究[J].河南工业大学学报(自然科学版),2019,40(4):59-63.REN Shuncheng,WANG Fengwen,LI Dan.Study on extrusion process of wheat bran[J].Journal of Henan University of Technology(Natural Science Edition),2019,40(4):59-63.
[19] ZHANG Y K,ZHANG M L,GUO X Y,et al.Improving the adsorption characteristics and antioxidant activity of oat bran by superfine grinding[J].Food Science&Nutrition,2023,11(1):216-227.
[20] 张瑞婷.蒸汽爆破对麦麸多酚组成及其抗氧化活性的影响[D].郑州:河南工业大学,2016.ZHANG Ruiting.Effect of steam explosion treatment on wheat bran phenolic compounds and antioxidant capacity[D].Zhengzhou:Henan University of Technology,2016.
[21] 高海飞.汽爆麦麸酶解发酵的研究[D].天津: 天津科技大学,2019.GAO Haifei.Study on enzymatic fermentation of the steam exploded wheat bran powder[D].Tianjin:Tianjin University of Science&Technology,2019.
[22] 吕春月,杨庆余,刘璐,等.微波联合酶法对小麦麸皮品质改良及结构特性影响[J].食品工业科技,2020,41(21):21-28.LV Chunyue,YANG Qingyu,LIU Lu,et al.Quality improvement and structural characteristics of wheat bran by microwave enzymatic method[J].Science and Technology of Food Industry,2020,41(21):21-28.
[23] 李治.不同处理方式对小麦麸皮理化性质影响的研究[D].天津:天津科技大学,2018.LI Zhi.Effects of different treatments on the physicochemical propertifs of wheat bran[D].Tianjin:Tianjin University of Science&Technology,2018.
[24] OLUKOMAIYA O O,ADIAMO O Q,FERNANDO W C,et al.Effect of solid-state fermentation on proximate composition,anti-nutritional factor,microbiological and functional properties of lupin flour[J].Food Chemistry,2020,315:126238.
[25] WU J F,REN L X,ZHAO N,et al.Solid-state fermentation by Rhizopus oryzae improves flavor of wheat bran for application in food[J].Journal of Cereal Science,2022,107:103536.
[26] TU J,ZHAO J,LIU G H,et al.Solid state fermentation by Fomitopsis pinicola improves physicochemical and functional properties of wheat bran and the bran-containing products[J].Food Chemistry,2020,328:127046.
[27] 李暄.发酵麸皮多糖提取、分离纯化及生物活性研究[D].呼和浩特:内蒙古农业大学,2019.LI Xuan.Extraction,separation purification and biological activity analysis of fermented wheat bran polysaccharide[D].Hohhot: Inner Mongolia Agricultural University,2019.
[28] TANASKOVIC S J,ŠEKULJICA N,JOVANOVIC J,et al.Upgrading of valuable food component contents and anti-nutritional factors depletion by solid-state fermentation: A way to valorize wheat bran for nutrition[J].Journal of Cereal Science,2021,99:103159.
[29] ZHAO H M,GUO X N,ZHU K X.Impact of solid state fermentation on nutritional,physical and flavor properties of wheat bran[J].Food Chemistry,2017,217:28-36.
[30] 胡博涵.利用发酵法释放麦麸中束缚型酚酸及其抗氧化活性的研究[D].广州:华南理工大学,2015.HU Bohan.Using fermentation release type bound phenolic acids in the wheat bran and its antioxidant activity[D].Guangzhou:South China University of Technology,2015.
[31] 周聪.微生物发酵对紫麦麸皮抗氧化活性的影响[D].泰安:山东农业大学,2014.ZHOU Cong.Effects of microbial fermentation on the antioxidant activities of purple wheat bran[D].Tai'an:Shandong Agricultural University,2014.
[32] 崔晨晓,朱科学,郭晓娜,等.酵母菌发酵对小麦麸皮成分的影响研究[J].中国粮油学报,2016,31(7):25-29.CUI Chenxiao,ZHU Kexue,GUO Xiaona,et al.Study on effect of yeast fermentation on the components of wheat bran[J].Journal of the Chinese Cereals and Oils Association,2016,31(7):25-29.
[33] JIANG X,LIU X,XU H J,et al.Improvement of the nutritional,antioxidant and bioavailability properties of corn gluten-wheat bran mixture fermented with lactic acid bacteria and acid protease[J].LWT-Food Science and Technology,2021,144:111161.
[34] WANG M,LEI M,SAMINA N,et al.Impact of Lactobacillus plantarum 423 fermentation on the antioxidant activity and flavor properties of rice bran and wheat bran[J].Food Chemistry,2020,330:127156.
[35] 赵浩源,张迎亚,蒋侃侃,等.黑曲霉固态发酵产阿魏酸酯酶及酶解麸皮制备阿魏酸[J].林业工程学报,2016,1(5):52-57.ZHAO Haoyuan,ZHANG Yingya,JIANG Kankan,et al.Production of feruloyl esterase by solid-state fermentation of Aspergillus niger and preparation of ferulic acid from wheat bran by enzymatic hydrolysis[J].Journal of Forestry Engineering,2016,1(5):52-57.
[36] 任雪荣,齐景伟,刘娜,等.微生物发酵对麦麸水溶性多酚含量、组成及抗氧化活性的影响研究[J].食品工业科技,2020,41(3):104-109.REN Xuerong,QI Jingwei,LIU Na,et al.Effect of microbial fermentation on content,composition and antioxidant activity of watersoluble polyphenols in wheat bran[J].Science and Technology of Food Industry,2020,41(3):104-109.
[37] 李翔宇,马慧,焦冠儒,等.混菌固态发酵麸皮生产微生态蛋白饲料工艺研究[J].农业科技与装备,2017(7):48-51.LI Xiangyu,MA Hui,JIAO Guanru,et al.Research on the technology for the microbial protein feed production by mixed culture solidstate fermentation of wheat bran[J].Agricultural Science&Technology and Equipment,2017(7):48-51.
[38] MAHMOUD E,SOROUR M,HUSSEIN M,et al.Impact of solid state fermentation on chemical composition,functional properties,and antioxidant activity of wheat bran[J].Journal of Sohag Agriscience(JSAS),2022,7(1):38-47.
[39] XIAO M Y,XIONG T,PENG Z,et al.Correlation between microbiota and flavours in fermentation of Chinese Sichuan Paocai[J].Food Research International,2018,114:123-132.
[40] CODA R,RIZZELLO C G,CURIEL J A,et al.Effect of bioprocessing and particle size on the nutritional properties of wheat bran fractions[J].Innovative Food Science & Emerging Technologies,2014,25:19-27.
[41] 王太军.麸皮乳酸菌发酵改性及其在馒头中的应用[D].郑州:河南工业大学,2017.WANG Taijun.Fermentation of bran with lactic acid bacteria and its application in steamed bread[D].Zhengzhou:Henan University of Technology,2017.
[42] ANNÉ J,ECONOMOU A,BERNAERTS K.Protein secretion in gram-positive bacteria:From multiple pathways to biotechnology[J].Current Topics in Microbiology and Immunology,2017,404: 267-308.
[43] 安晓萍,王园,齐景伟,等.基于响应面法分析菌比和辅料对发酵麸皮多糖含量的影响[J].食品工业科技,2018,39(3):122-126.AN Xiaoping,WANG Yuan,QI Jingwei,et al.Effects of the starter rate and additive agents on polysaccharides in fermented wheat bran by response surface methodology[J].Science and Technology of Food Industry,2018,39(3):122-126.
[44] 张福娟.黑曲霉和热带假丝酵母混菌固态发酵麸皮工艺优化[J].辽宁师专学报(自然科学版),2020,22(1):97-101.ZHANG Fujuan.Optimization of technology for solid-state fermentation of bran by Aspergillus niger and Candida tropicalis[J].Journal of Liaoning Normal Colleges(Natural Science Edition),2020,22(1):97-101.
[45] MIKKELSEN D,FLANAGAN B M,DYKES G A,et al.Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524[J].Journal of Applied Microbiology,2009,107(2):576-583.
[46] ZHAO Y T,SHI L,HU C L,et al.Wheat bran for colon cancer prevention: The synergy between phytochemical alkylresorcinol C21 and intestinal microbial metabolite butyrate[J].Journal of Agricultural and Food Chemistry,2019,67(46):12761-12769.
[47] MA S,WANG Z,LIU H M,et al.Supplementation of wheat flour products with wheat bran dietary fiber: Purpose,mechanisms,and challenges[J].Trends in Food Science & Technology,2022,123:281-289.
[48] LI N J,WANG S J,WANG T L,et al.Valorization of wheat bran by three fungi solid-state fermentation: Physicochemical properties,antioxidant activity and flavor characteristics[J].Foods(Basel,Switzerland),2022,11(12):1722.
[49] YIN Z N,WU W J,SUN C Z,et al.Antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by solid-state fermentation of Aspergillus niger[J].Biomedical and Environmental Sciences,2019,32(1):11-21.
[50] MAO M L,WANG P,SHI K X,et al.Effect of solid state fermentation by Enterococcus faecalis M2 on antioxidant and nutritional properties of wheat bran[J].Journal of Cereal Science,2020,94:102997.
[51] YANG K,ZHAN L H,LU T T,et al.Dendrobium officinale polysaccharides protected against ethanol-induced acute liver injury in vivo and in vitro via the TLR4/NF-κB signaling pathway[J].Cytokine,2020,130:155058.
[52] MENG M,ZHANG R,HAN R,et al.The polysaccharides from the Grifola frondosa fruiting body prevent lipopolysaccharide/D-galactosamine-induced acute liver injury via the miR-122-Nrf2/ARE pathways[J].Food&Function,2021,12(5):1973-1982.
Research Overview of Bran Modification and Its Biotransformation
张杰,廖爱美,潘龙,等.麸皮改性及其生物转化的研究概述[J].食品研究与开发,2023,44(15):201-205.
ZHANG Jie,LIAO Aimei,PAN Long,et al.Research Overview of Bran Modification and Its Biotransformation[J].Food Research and Development,2023,44(15):201-205.