灵芝是一种具有食用和药用价值的传统真菌[1]。灵芝子实体含有丰富的活性成分,如灵芝多糖、三萜类化合物、蛋白质和微量元素等,多年来受到国内外学者的广泛关注和深入研究[2]。已经证实灵芝活性成分具有抗氧化[3-5]、抗肿瘤[6-7]、保肝护肝[8]、预防糖尿病[9]、改善抑郁行为[10]、提高机体免疫力[11]、抑制肥胖[12]等多种生物活性。
目前,研究表明人类的许多慢性疾病和衰老现象均与人体内的自由基水平失衡有关。清除自由基等抗氧化研究越来越受到重视[13]。1,1-二苯基-2-三硝基苯肼(1,1-Diphenyl-2-picrylhydrazyl radical,DPPH)是一种很稳定的氮中心的自由基[14],被广泛用于评价天然化合物的抗氧化活性。
野生灵芝和栽培灵芝活性成分及药理作用是否存在显著差异,学术界意见不统一。曹恒生等[15]研究表明野生灵芝的多糖含量比栽培灵芝的高;周春红等[16]认为栽培灵芝和野生灵芝的活性成分差异不是很大;莫峥嵘等[17]对海南栽培灵芝与野生灵芝的5个样本的总糖含量进行比较分析,得出结论为栽培海南赤芝和栽培信州赤芝的总糖含量比野生海南赤芝的低,但高于野生黄边灵芝和野生海南灵芝的总糖含量;孟国良等[18]研究表明同一菌株栽培的子实体多糖和三萜含量明显高于相应的野生子实体。目前大多研究都是对不同菌株的野生灵芝与栽培灵芝主要活性成分的比较研究,但对于同一菌株野生灵芝子实体及驯化后子实体进行比较的研究较少。本研究以采自河南省南召县的30个野生灵芝为研究对象(30个灵芝的种质鉴定和出芝试验已另文报道[19]),对其中能驯化出芝的25个灵芝菌株驯化前后的子实体主要活性成分差异进行了研究,为进一步开发高活性的野生灵芝资源提供依据。
1.1.1 试验材料
供试野生灵芝菌株25个(采集自河南省安阳市南召县),由河北工程大学食用菌实验室分离和保藏,菌株编号见表1。
表1 供试菌株
Table 1 Strains for test
序号 菌株编号images/BZ_173_1622_818_1640_1350.png序号 菌株编号images/BZ_173_1942_818_1958_1350.png序号 菌株编号1 YL-15 10 YL-51 19 YL-76 2 YL-8 11 YL-61 20 YL-82 3 YL-57 12 YL-72 21 YL-53 4 YL-93 13 YL-31 22 YL-77 5 YL-42 14 YL-40 23 YL-81 6 YL-12 15 YL-88 24 YL-14 7 YL-68 16 YL-89 25 YL-18 8 YL-83 17 YL-37 9 YL-49 18 NZ-28
1.1.2 试剂
甲醇(分析纯):莱阳经济技术开发区精细化工厂;三氯乙酸(分析纯):天津市大茂化学试剂厂;高氯酸(分析纯):国药集团化学试剂有限公司;冰醋酸(分析纯):天津欧博凯化工有限公司;铁氰化钾(分析纯)、重蒸酚(C6H6O,分析纯)、香草醛(分析纯)、熊果酸(分析纯):生工生物工程(上海)股份有限公司;牛血清蛋白、考马斯亮蓝G-250(生物染色剂)、DPPH:天根生化科技(北京)有限公司。
电热鼓风干燥箱(DHG-9070):上海一恒科学仪器有限公司;722S可见分光光度计:上海仪电分析仪器有限公司;凯特离心机(TG18G):盐城市凯特试验仪器有限公司。
1.3.1 样品制备
按照栽培袋培养基配方(棉籽壳86%、麦麸12%、石灰1%、石膏1%)准确称取配料,制作培养袋,接种后25℃恒温培养25 d,长满袋后生理后熟10 d进入出菇管理。将菌袋移至出菇棚内,棚室要求有少量散射光,空气湿度保持在80%~90%,温度保持在25℃~28℃,最高温度不超过30℃。采收第一潮子实体并剪碎、80℃烘干至恒重,粉碎,过20 mm筛,保存在干燥器中备用。
1.3.2 灵芝多糖含量测定
采用传统热水回流提取法提取灵芝多糖,并参考文献[20]所述用苯酚-硫酸法进行多糖含量测定。
1.3.3 灵芝三萜含量测定
采用乙醇回流提取法提取灵芝三萜[21],并参考文献[22]所述用香草醛-高氯酸-冰乙酸显色法测定灵芝三萜的含量。
1.3.4 灵芝粗蛋白含量测定
采用凯氏定氮法测定灵芝粗蛋白含量[23]。
1.3.5 灵芝可溶性蛋白含量测定
采用考马斯亮蓝法测定灵芝可溶性蛋白含量[24]。
1.3.6 灵芝灰分含量测定
采用马弗炉灼烧法测定灵芝灰分含量[25]。
1.3.7 灵芝水提取液体外抗氧化活性测定
DPPH自由基清除率测定参照Hu等[26]的方法;总还原力测定参照Tulsawani等[27]的方法。
用SPSS统计分析软件对数据进行差异显著性分析。
2.1.1 采集野生灵芝子实体营养成分对比分析
不同菌株野生灵芝活性成分含量分析见表2。
表2 不同菌株野生灵芝活性成分含量分析
Table 2 Analysis of active components in wild Ganoderma lucidum
注:同列不同小写字母表示差异显著(P<0.05)。
菌株菌株(mg/g) 粗蛋白/% 可溶性蛋白/(mg/g)YL-15 46.49±0.23j8.69±0.03g11.15±0.07g3.58±0.03h YL-8 49.00±0.06h7.60±0.02j9.83±0.02j 3.01±0.04k YL-57 48.67±0.05h9.32±0.07d9.37±0.16l 3.69±0.03g YL-93 44.40±0.26m8.06±0.07h8.26±0.05n 2.87±0.03m YL-42 55.53±0.14b9.13±0.04e8.03±0.17o 3.58±0.00h YL-12 54.65±0.11c9.61±0.03c9.27±0.08l 2.95±0.03l YL-68 37.62±0.29p7.22±0.03k15.63±0.13a3.51±0.01i YL-83 45.71±0.38k5.66±0.04q12.25±0.04e4.57±0.03d YL-49 42.49±0.26n7.12±0.07l11.86±0.17f3.56±0.04hi YL-51 46.35±0.27j6.21±0.04o8.63±0.06m 3.55±0.05hi YL-61 37.21±0.16p5.96±0.04p7.59±0.01p 3.59±0.05h YL-72 53.17±0.30e6.00±0.05p13.99±0.11b4.60±0.01d YL-31 33.20±0.45q6.68±0.01n10.19±0.08i3.76±0.02f编号 多糖/% 三萜/灰分/%2.94±0.01b 3.91±0.00a 2.07±0.03j 2.05±0.00j 1.88±0.01m 1.64±0.01p 1.58±0.01q 2.76±0.01c 1.63±0.02p 1.33±0.00s 2.22±0.00g 2.28±0.01f 1.79±0.00o编号 多糖/% 三萜/(mg/g) 粗蛋白/% 可溶性蛋白/(mg/g) 灰分/%YL-40 44.68±0.28m11.30±0.06a8.74±0.09m 2.86±0.02m 1.95±0.01l YL-88 49.53±0.32g9.00±0.07f10.8±0.08h 4.38±0.02e 1.55±0.01r YL-89 53.94±0.67d7.80±0.01i8.04±0.11o 3.39±0.02j 1.34±0.00s YL-37 50.31±0.41f2.65±0.02r6.52±0.08q 1.78±0.05n 2.01±0.00k NZ-28 38.17±0.13o8.05±0.06h11.14±0.06g4.73±0.03c 1.63±0.00p YL-76 54.82±0.15c10.65±0.03b12.67±0.04d4.37±0.03e 2.09±0.00i YL-82 50.40±0.42f9.39±0.04d13.34±0.06c6.29±0.03a 1.87±0.00m YL-53 44.90±0.37lm9.08±0.09ef9.57±0.11k 4.92±0.05b 1.84±0.00n YL-77 45.55±0.10k7.80±0.09i11.72±0.04f3.60±0.03h 2.71±0.00d YL-81 45.23±0.03kl7.99±0.01h9.69±0.14jk 3.51±0.02i 2.19±0.00h YL-14 57.30±0.09a7.00±0.09m12.20±0.13e4.60±0.01d 2.41±0.00e YL-18 47.69±0.28i7.78±0.03i8.19±0.05no 4.71±0.02c 2.75±0.00c
由表2可知,25个野生灵芝的多糖含量为33.20%~57.30%,YL-14最高达到 57.30%,YL-31最低,为 33.20%;三萜含量为 2.65 mg/g~11.30 mg/g,YL-40最高,YL-37最低;粗蛋白含量为6.52%~15.63%,YL-68最高,YL-37最低;可溶性蛋白含量为1.78 mg/g~6.29 mg/g,YL-82最高,YL-37最低;灰分含量为1.33%~3.91%,YL-8最高,YL-51最低。不同菌株之间活性成分含量多数存在显著性差异。
2.1.2 驯化后灵芝子实体活性成分测定结果
不同菌株驯化后灵芝活性成分含量分析见表3。
表3 不同菌株驯化后灵芝子实体活性成分含量分析
Table 3 Analysis of active components in Ganoderma lucidum fruiting bodies after domestication by different strains
注:同列不同小写字母表示差异显著(P<0.05)。
菌株菌株(mg/g) 粗蛋白/% 可溶性蛋白/(mg/g)YL-15 32.57±0.18o7.46±0.03m13.24±0.18b 4.95±0.03f YL-8 41.73±0.50g7.19±0.04n11.99±0.12cd2.48±0.02r YL-57 31.55±0.42p9.74±0.03b10.92±0.01efg4.73±0.02g YL-93 31.66±0.53p8.22±0.05j11.37±0.16def5.06±0.07e YL-42 35.58±0.04m9.90±0.01a12.57±0.05bc 4.8±0.08g YL-12 49.21±0.35a8.73±0.03f10.41±0.06g4.95±0.05f YL-68 48.66±0.04b8.31±0.02i11.62±0.12de4.54±0.04i YL-83 35.47±0.04mn7.48±0.01m15.85±0.05a7.08±0.07c YL-49 39.32±0.34i5.59±0.02r12.87±0.02b3.50±0.01m YL-51 41.55±0.20g8.87±0.01e12.54±0.15bc4.64±0.04h YL-61 42.26±0.21f8.21±0.02j11.62±0.11de7.74±0.01b YL-72 46.71±0.39c7.70±0.06l 8.66±0.04i 2.92±0.09p YL-31 31.69±0.12p7.73±0.08l9.44±0.13h 3.77±0.07l编号 多糖/% 三萜/灰分/%2.18±0.04b 1.19±0.02m 1.10±0.00op 1.25±0.02l 1.37±0.01i 1.28±0.01k 1.41±0.00h 1.70±0.01e 1.54±0.00f 1.49±0.02g 1.21±0.01m 1.43±0.01h 0.98±0.01q编号 多糖/% 三萜/(mg/g) 粗蛋白/% 可溶性蛋白/(mg/g) 灰分/%YL-40 35.04±0.26n8.93±0.09e11.88±0.09d5.22±0.07d1.12±0.00no YL-88 39.17±0.12ij7.00±0.05o15.70±0.16a3.36±0.02n 1.41±0.02h YL-89 49.40±0.06a8.00±0.07k9.10±0.14hi3.89±0.07k 1.33±0.01j YL-37 43.55±0.30e6.90±0.10p11.03±0.10efg2.79±0.04q 1.08±0.02p NZ-28 36.30±0.20l9.60±0.08c 9.77±0.89h 4.44±0.04j1.15±0.01n YL-76 39.09±0.18ijk8.57±0.03gh11.80±0.13ef4.38±0.02j 2.08±0.02c YL-82 44.79±0.45d9.16±0.04d11.60±0.12de5.10±0.01e 1.68±0.01e YL-53 38.78±0.33jk 7.68±0.01l8.89±0.02hi3.14±0.03o1.10±0.01op YL-77 40.11±0.08h6.58±0.06q13.35±0.03b4.82±0.05g 2.15±0.01b YL-81 39.07±0.08ijk8.92±0.03e 8.65±0.13i3.57±0.02m 1.45±0.02h YL-14 38.63±0.21k8.50±0.02h10.84±0.04fg3.71±0.02l1.87±0.01d YL-18 41.73±0.18g8.63±0.07g10.95±0.15efg10.04±0.08a2.22±0.07a
由表3可知,25个栽培灵芝的多糖含量为31.55%~49.40%,YL-89最高达到49.40%,YL-57最低为 31.55%;三萜含量为 5.59mg/g~9.90mg/g,YL-42最高,YL-49最低;粗蛋白含量为8.65%~15.85%,YL-83最高,YL-81最低;可溶性蛋白含量为2.48 mg/g~10.04 mg/g,YL-18最高,YL-8最低;灰分含量为0.98%~2.22%,YL-18最高,YL-31最低。不同菌株之间活性成分含量多数存在显著性差异。
2.2.1 多糖含量对比分析
同一菌株野生灵芝驯化前后子实体的多糖含量分析见图1。
图1 同一野生灵芝菌株驯化前后子实体多糖含量对比
Fig.1 Comparison of polysaccharide content in fruiting bodies of the same wild Ganoderma lucidum strain before and after domestication
与栽培相比,*表示差异显著,P<0.05;** 表示差异极显著,P<0.01。
由图1可知,同一菌株野生灵芝驯化前后子实体的多糖含量差异较大,除菌株YL-68和YL-61外,其他菌株野生灵芝多糖含量均高于其栽培灵芝的多糖含量,并且均呈现显著或极显著性差异。
2.2.2 三萜含量对比分析
同一菌株野生灵芝驯化前后子实体的三萜含量分析见图2。
图2 同一野生灵芝菌株驯化前后子实体三萜含量对比
Fig.2 Comparison of triterpenoid contents in fruiting bodies of the same wild Ganoderma lucidum strain before and after domestication
与栽培相比,*表示差异显著,P<0.05;** 表示差异极显著,P<0.01。
由图2可知,同一菌株野生灵芝驯化前后子实体的三萜含量差异较大,与多糖含量不同,YL-15、YL-8等10个菌株的野生灵芝三萜含量高于其栽培灵芝的三萜含量。
2.2.3 粗蛋白含量对比分析
同一菌株野生灵芝驯化前后子实体的粗蛋白含量分析见图3。
图3 同一野生灵芝菌株驯化前后子实体粗蛋白含量对比
Fig.3 Comparison of crude protein content in fruiting bodies of the same wild Ganoderma lucidum strain before and after domestication
与野生相比,*表示差异显著,P<0.05;**表示差异极显著,P<0.01。
由图3可知,野生灵芝粗蛋白含量高于其驯化后子实体的菌株只有9个,占比仅36%,驯化后灵芝菌株YL-83和YL-88子实体表现出较高的粗蛋白含量潜力。
2.2.4 可溶性蛋白含量对比分析
同一菌株野生灵芝驯化前后子实体的可溶性蛋白含量分析见图4。
图4 同一野生灵芝菌株驯化前后子实体可溶性蛋白含量对比
Fig.4 Comparison of soluble protein content in fruiting bodies of the same wild Ganoderma lucidum strain before and after domestication
与野生相比,*表示差异显著,P<0.05;**表示差异极显著,P<0.01。
由图4可知,多数野生灵芝可溶性蛋白含量低于其驯化后子实体的含量,且驯化后灵芝菌株YL-83、YL-61和YL-18表现出高可溶性蛋白含量潜力。
2.2.5 灰分含量对比分析
同一菌株野生灵芝驯化前后子实体的灰分含量分析见图5。
图5 同一野生菌株驯化前后子实体灰分含量对比
Fig.5 Comparison of ash content in fruiting bodies of the same wild Ganoderma lucidum strain before and after domestication
与栽培相比,*表示差异显著,P<0.05;**表示差异极显著,P<0.01。
由图5可知,大部分野生灵芝菌株的灰分含量高于其驯化后子实体,且存在极显著性差异,菌株YL-8的驯化前灰分含量最高,菌株YL-89和YL-76的野生灵芝灰分与驯化后子实体灰分含量接近,无显著性差异。
不同菌株灵芝子实体水提取液体外抗氧化活性分析见表4。
表4 不同菌株灵芝水提取液体外抗氧化活性
Table 4 Antioxidant activity of Ganoderma lucidum aqueous extract in vitro
注:同列不同小写字母表示差异显著(P<0.05)。
菌株编号DPPH自由基清除率/%野生灵芝 野生灵芝VC 97.62±0.58a 2.39±0.03a YL-15 69.30±0.28k 0.28±0.00ij YL-8 88.31±0.16b 0.42±0.01b YL-57 75.62±0.39fg 0.33±0.00d YL-93 64.87±0.31m 0.28±0.01ijk YL-42 76.00±0.53ef 0.34±0.00d YL-12 80.63±0.93d 0.29±0.01hi YL-68 85.46±0.39c 0.22±0.00n YL-83 61.41±0.12op 0.31±0.00fg YL-49 75.16±0.39g 0.31±0.00g YL-51 76.80±0.22e 0.31±0.00efg YL-61 75.77±0.19fg 0.30±0.00gh YL-72 70.24±0.79j 0.28±0.00ijk驯化栽培灵芝97.62±0.58a 59.99±0.96d 58.86±0.19e 64.90±0.72b 49.58±0.38l 53.52±0.26gh 54.42±0.98g 54.66±0.59f 50.32±0.53kl 53.13±0.84hi 36.60±0.42r 60.65±0.89d 37.65±0.44q总还原力(A700)驯化栽培灵芝2.39±0.03a 0.25±0.00bc 0.26±0.00b 0.26±0.00b 0.23±0.00de 0.24±0.00bcd 0.22±0.00de 0.18±0.06gh 0.22±0.00def 0.22±0.01ef 0.20±0.00fg 0.26±0.00b 0.12±0.00i images/BZ_177_1257_2319_1272_3078.png菌株编号YL-31 YL-40 YL-88 YL-89 YL-37 NZ-28 YL-76 YL-82 YL-53 YL-77 YL-81 YL-14 YL-18 DPPH自由基清除率/% 总还原力(A700)野生灵芝 驯化栽培灵芝 野生灵芝 驯化栽培灵芝55.40±0.29r 47.33±0.85m 0.27±0.00jk 0.21±0.01ef 88.54±0.79b 53.62±0.61gh 0.36±0.00c 0.22±0.00ef 59.13±0.18q 52.03±0.35j 0.27±0.01jk 0.23±0.00cde 60.97±0.43p 51.01±0.11k 0.25±0.00l 0.18±0.00gh 72.99±0.74h 61.69±0.18c 0.32±0.01de 0.25±0.00bc 66.64±0.18l 53.49±0.35gh 0.27±0.00ijk 0.21±0.01ef 62.30±0.93n 42.14±0.44o 0.23±0.00mn 0.17±0.00h 70.55±0.41j 40.49±0.06p 0.31±0.01g 0.22±0.01ef 72.02±0.22i 42.12±0.44o 0.30±0.01gh 0.11±0.01i 61.80±0.37no 45.94±0.03n 0.24±0.00lm 0.17±0.00h 76.21±0.12ef 40.72±0.43p 0.32±0.00def 0.21±0.00ef 67.04±0.12l 52.28±0.22ij 0.26±0.01k 0.22±0.00de 72.58±0.43hi 55.06±0.82f 0.31±0.00fg 0.26±0.00b
由表4可知,野生灵芝驯化前后子实体的水提液都具有一定的抗氧化活性,不同菌株之间DPPH自由基清除率存在较大差异,驯化前后水提液的DPPH自由基清除率范围分别为55.40%~88.54%和36.60%~64.90%;不同菌株灵芝水提取液对Fe2+具有一定的还原力,并且与DPPH自由基清除率的趋势一致,驯化前子实体水提液的体外抗氧化活性均高于驯化后子实体,其中YL-8、YL-68和YL-40表现出较好的抗氧化能力。
本研究发现,不同灵芝菌株之间及同一菌株驯化前后子实体之间营养成分含量存在显著性差异,大部分野生灵芝的多糖和灰分含量高于其驯化后子实体,而大部分菌株驯化后子实体的三萜、粗蛋白和可溶性蛋白含量高于野生灵芝。驯化前水提液的体外抗氧化活性均高于驯化后子实体,造成这种现象的原因,可能是由于灵芝多糖易溶于水,而灵芝三萜不易溶于水,所以灵芝水提液的体外抗氧化活性与灵芝多糖含量测定结果的趋势较为接近,例如YL-8、YL-68和YL-40表现出较好的抗氧化能力。
不同种类灵芝、灵芝不同部位以及灵芝不同的生长阶段所含的灵芝活性成分含量和种类会有所差异[28],一些关于野生蘑菇的报告称,环境因素和自然生境可能是影响活性成分含量及构成的重要因素,如Zhang等[29]发现热胁迫可促进灵芝三萜的生物合成,Stojkovi等[30]证明灵芝的化学和生物活性特性高度依赖于样品的来源。因此简单地说野生灵芝价值高于栽培灵芝较片面。本研究对野生灵芝和栽培灵芝提出更客观的认识,为理性消费市场上灵芝产品提供参考依据,同时充分挖掘利用南召县丰富野生灵芝资源的潜在价值,为野生灵芝驯化必要性提供理论依据。
[1]WANG H,YU Q,DING X M,et al.RNA-seq based elucidation of mechanism underlying Ganoderma atrum polysaccharide induced immune activation of murine myeloid-derived dendritic cells[J].Journal of Functional Foods,2019,55:104-116.
[2]张瑞婷,周涛,宋潇潇,等.灵芝活性成分及其药理作用的研究进展[J].安徽农业科学,2018,46(3):18-19,22.ZHANG Ruiting,ZHOU Tao,SONG Xiaoxiao,et al.Research progress on active ingredients and pharmacological action of Ganoderma lucidum[J].Journal of Anhui Agricultural Sciences,2018,46(3):18-19,22.
[3]李田田,黄梓芮,潘雨阳,等.树舌灵芝化学成分分析及其多糖、三萜组分的抗氧化活性[J].食品工业科技,2017,38(19):63-66,73.LI Tiantian,HUANG Zirui,PAN Yuyang,et al.Analysis of chemical constituents of Ganoderma lucidum and its antioxidant activity in polysaccharides and triterpenoids[J].Science and Technology of Food Industry,2017,38(19):63-66,73.
[4]ZHU K X,NIE S P,TAN L H,et al.A polysaccharide from Ganoderma atrum improves liver function in type 2 diabetic rats via antioxidant action and short-chain fatty acids excretion[J].Journal of Agricultural and Food Chemistry,2016,64(9):1938-1944.
[5]JIANG G Y,LEI A T,CHEN Y,et al.The protective effects of the Ganoderma atrum polysaccharide against acrylamide-induced inflammation and oxidative damage in rats[J].Food&Function,2021,12(1):397-407.
[6]徐锦,汪雯翰,杨妍,等.乙醇浓度对提取灵芝三萜含量的影响及提取物抗前列腺癌细胞LNCaP的活性[J].菌物学报,2020,39(1):155-163.XU Jin,WANG Wenhan,YANG Yan,et al.Effects of ethanol concentration on the extraction of triterpenoids in Ganoderma Lingzhi and activity of the extract against prostate cancer cells LNCaP[J].Mycosystema,2020,39(1):155-163.
[7]AHMAD M F.Ganoderma lucidum:A rational pharmacological approach to surmount cancer[J].Journal of Ethnopharmacology,2020,260:113047.
[8]ZHANG Y W,FENG Y B,WANG W S,et al.Characterization and hepatoprotections of Ganoderma lucidum polysaccharides against multiple organ dysfunction syndrome in mice[J].Oxidative Medicine and Cellular Longevity,2021,2021:9703682.
[9]刘亚萍,张泽生,李雨蒙,等.灵芝多糖降血糖机制的研究进展[J].食品研究与开发,2018,39(2):215-218.LIU Yaping,ZHANG Zesheng,LI Yumeng,et al.The research progress of the hypoglycemic mechanism of Ganoderma lucidum polysaccharide[J]. Food Research and Development,2018,39(2):215-218.
[10]LI H R,XIAO Y H,HAN L,et al.Ganoderma lucidum polysaccharides ameliorated depression-like behaviors in the chronic social defeat stress depression model via modulation of Dectin-1 and the innate immune system[J].Brain Research Bulletin,2021,171:16-24.
[11]REN L,ZHANG J,ZHANG T H.Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells[J].Food Chemistry,2021,340:127933.
[12]BU S,ZHENG H H,YUAN C Y,et al.Lingzhi or reishi medicinal mushroom,Ganoderma lucidum(Agaricomycetes),polysaccharides suppressed adipogenesis and stimulated lipolysis in HPA-v and 3T3-L1 adipocytes[J].International Journal of Medicinal Mushrooms,2020,22(9):897-908.
[13]聂健,杨水莲,莫美华,等.7种不同来源灵芝热水提物体外抗氧化活性研究[J].安徽农业科学,2016,44(18):134-136,174.NIE Jian,YANG Shuilian,MO Meihua,et al.Antioxidant activity of hot water extracts from seven different sources of Ganodema lucidum[J].Journal of Anhui Agricultural Sciences,2016,44(18):134-136,174.
[14]周国亮,宋翼升,辛艳飞,等.灵芝多糖抗氧化和抗肿瘤活性的研究进展[J].中华中医药学刊,2014,32(5):1002-1005.ZHOU Guoliang,SONG Yisheng,XIN Yanfei,et al.Progress in research on anti-oxidation and anti-tumor effect of Ganoderma lucidum polysaccharide[J].Chinese Archives of Traditional Chinese Medicine,2014,32(5):1002-1005.
[15]曹恒生,赵立新.野生和栽培灵芝主要生化成分的比较[J].安徽农业科学,1996,24(S2):54-55.CAO Henshen,ZHAO Lixin.Comparison of main biochemical components between wild and cultivated Ganoderma lucidum[J].Journal of Anhui Agricultural Sciences,1996,24(S2):54-55.
[16]周春红,董佳.人工栽培灵芝与野生灵芝活性成分的比较分析[J].中国食物与营养,2010,16(12):65-68.ZHOU Chunhong,DONG Jia.Comparative analysis of active components between wild and cultivated Ganoderma lucidum[J].Food and Nutrition in China,2010,16(12):65-68.
[17]莫峥嵘,陈光英,黄爱华,等.海南栽培灵芝与野生灵芝的总糖含量比较[J].食品工业,2012,33(11):183-184.MO Zhengrong,CHEN Guangying,HUANG Aihua,et al.Comparison on total saccharide between cultivated and wild Ganoderma collected from Hainan[J].The Food Industry,2012,33(11):183-184.
[18]孟国良,程冰,叶丽云,等.野生与栽培灵芝子实体活性成分比较[J].福建农业学报,2018,33(5):485-490.MENG Guoliang,CHENG Bing,YE Liyun,et al.Active components in wild and cultivated Ganoderma fruiting bodies[J].Fujian Journal of Agricultural Sciences,2018,33(5):485-490.
[19]张彬彬,王震,刘保卫,等.30个野生灵芝菌株遗传多样性及农艺性状评价[J].江苏农业科学,2022,50(2):108-114.ZHANG Binbin,WANG Zheng,LIU Baowei,et al.Evaluation of genetic diversity and agronomic traits of 30 wild Ganoderma lucidum strains[J].Jiangsu Agricultural Sciences,2022,50(2):108-114.
[20]中华人民共和国农业部.食用菌中粗多糖含量的测定:NY/T 1676—2008[S].北京:中国农业出版社,2008.Ministry of Agriculture of the People's Republic of China.Determination of crude mushroom polysaccharides:NY/T 1676—2008[S].Beijing:China Agriculture Press,2008.
[21]陈慧,王晓玲,刘高强.灵芝子实体中三萜酸的提取及其稳定性[J].食用菌学报,2015,22(4):58-64.CHEN Hui,WANG Xiaoling,LIU Gaoqiang.Optimization of triterpenoid acid extraction from Ganoderma Lingzhi fruit bodies and stability under different temperature-time regimes[J].Acta Edulis Fungi,2015,22(4):58-64.
[22]中华人民共和国农业农村部.灵芝中总三萜含量的测定分光光度法:NY/T 3676-2020[S].北京:中国农业出版社,2020:1-3.Determination of total triterpene in ganoderma-Spectrophotometric method:NY/T3676-2020[S].Beijing:China Agriculture Press,2020:1-3.
[23]中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局.食品安全国家标准食品中蛋白质的测定:GB 5009.5—2016[S].北京:中国标准出版社,2017.National Health and Family Planning Commission of the People's Republic of China,State Food and Drug Administration.National food safety standard determination of protein in food:GB 5009.5—2016[S].Beijing:Standards Press of China,2017.
[24]王学奎,黄见良.植物生理生化实验原理与技术[M].3版.北京:高等教育出版社,2015:182-183.WANG Xuekui,HUANG Jianliang.Principles and techniques of plant physiological biochemical experiment[M].3rd ed.Beijing:Higher Education Press,2015:182-183.
[25]中华人民共和国国家卫生和计划生育委员会.食品安全国家标准食品中灰分的测定:GB 5009.4—2016[S].北京:中国标准出版社,2017.National Health and Family Planning Commission of the People's Republic of China.National food safety standard determination of ash in food:GB 5009.4—2016[S].Beijing:Standards Press of China,2017.
[26]HU S Z,YIN J Y,NIE S P,et al.In vitro evaluation of the antioxidant activities of carbohydrates[J].Bioactive Carbohydrates and Dietary Fibre,2016,7(2):19-27.
[27]TULSAWANI R,SHARMA P,MANIMARAN M,et al.Effects of extraction temperature on efficacy of Lingzhi or reishi medicinal mushroom,Ganoderma lucidum (Agaricomycetes),aqueous extract against oxidative stress[J].International Journal of Medicinal Mushrooms,2020,22(6):547-558.
[28]魏巍,韩嘉钰,余梦瑶,等.灵芝药效成分形成的规律研究[J].中国食用菌,2017,36(3):57-59,64.WEI Wei,HAN Jiayu,YU Mengyao,et al.Effective components form regularity of Ganoderma lucidum[J].Edible Fungi of China,2017,36(3):57-59,64.
[29]ZHANG X,REN A,LI M J,et al.Heat stress modulates mycelium growth,heat shock protein expression,ganoderic acid biosynthesis,and hyphal branching of Ganoderma lucidum via cytosolic Ca2+[J].Applied and Environmental Microbiology,2016,82(14):4112-4125.
[30]STOJKOVI D S,BARROS L,CALHELHA R C,et al.A detailed comparative study between chemical and bioactive properties of Ganoderma lucidum from different origins[J].International Journal of Food Sciences and Nutrition,2014,65(1):42-47.
Comparative of Active Components of Wild Ganoderma lucidum Fruiting Bodies Before and After Domestication
张彬彬,王慧真,刘晓雪,等.野生灵芝驯化前后子实体活性成分比较[J].食品研究与开发,2022,43(20):164-171.
ZHANG Binbin,WANG Huizhen,LIU Xiaoxue,et al.Comparative of Active Components of Wild Ganoderma lucidum Fruiting Bodies Before and After Domestication[J].Food Research and Development,2022,43(20):164-171.