刺梨(Rosa roxburghii Tratt.)是贵州省珍贵的优势特色资源,已在食品、医药领域应用开发,发展前景可观。刺梨作为贵州省十二大特色产业之一,目前全省栽培面积(300万亩以上)和产量(在1 500万kg以上)均居世界之首。随着刺梨产业的发展,刺梨加工后的剩余残渣,一直都是困扰生产厂家的一个棘手问题。刺梨果实经榨汁后,会残留近50%的果渣,其直接食用口感较差,作为饲料效果不佳,鲜渣容易发霉腐烂不宜保存[1]。目前,关于刺梨果渣开发的研究较少,仅有关于刺梨果渣食品[2]、刺梨果渣饲料[3]、刺梨果渣膳食纤维[4-5]、提取多糖[6]等的研究,但其工业化应用基本为零,大部分被丢弃,造成严重的资源浪费和环境污染。因此,对刺梨果渣的高值化利用技术进行研究,改善原料加工品质,对于充分发挥刺梨资源的功能优势,实现刺梨副产物的高效利用,生产高附加值产品,减少生产排放及浪费,促进刺梨产业发展具有重要意义。
植物多酚是果品蔬菜中含量较高的次级代谢产物,广泛存在于果品蔬菜的果、叶、果实中,是由没食子酸及其聚合物的葡萄糖醇、黄烷醇及其衍生物的聚合物等多羟基类化合物的总称[7]。现有研究表明,植物多酚在减肥降脂、抗氧化、预防糖尿病、消炎、心脑血管疾病[8-10]等方面具有较好的生物活性。目前已开发的植物多酚种类较多,如苹果渣多酚、茶叶多酚、柑橘皮渣多酚、葡萄皮渣多酚等。周宏炫等[11]研究表明,刺梨多酚可降低急性酒精中毒大鼠血清中谷丙转氨酶、谷草转氨酶、甘油三脂、丙二醛的水平,提高抗氧化生理生化指标,其作用机制与加速乙醇分解及增加机体抗氧化能力有关。然而,目前的研究中涉及刺梨渣及其多酚方面的较少。
因此,本文研究刺梨渣多酚(Rosa roxburghii Tratt.polyphenols,RRTP)对营养过剩诱发的机体肥胖发生、发展过程的干预作用,从生长状况、生理生化指标研究其作用效果,并从mRNA水平探讨刺梨渣多酚对长期高脂膳食小鼠脂代谢紊乱及抗氧化应激损伤的作用机制。为刺梨渣多酚的开发与应用提供了一定的理论基础。
刺梨渣(鲜):贵州奇昂生物科技有限公司;SPF级健康雄性小鼠[50只,体质量18 g~20 g,生产许可证号:SCXK(辽)2015-0001]:辽宁长生生物技术股份有限公司;基础饲料:重庆腾鑫生物技术有限公司;定量引物:深圳华大基因科技服务有限公司;RNases抑制剂(活性≥40 U/μL)、M-MLV 反转录酶(不含 DNA 内切酶、外切酶、磷酸酯酶、RNA酶):美国普洛麦格公司;荧光定量试剂、荧光定量膜、荧光定量板:Bio-Rad公司;甘油三酯(triglyceride,TG)、总胆固醇(total cholesterol,TC)、低密度脂蛋白胆固醇(Low-density lipoprotein cholesterol,LDL-C)、丙二醛(malondialdehyde,MDA)、高密度脂蛋白胆固醇(High-density lipoprotein cholesterol,HDL-C)、谷胱甘肽(glutathione,GSH)含量,过氧化氢酶(catalase,CAT)、总超氧化物歧化酶(total superoxide dismutase,T-SOD)、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)活性测定试剂盒:南京建成生物工程研究所;Amberlite XAD-2树脂:美国西格玛奥德里奇贸易有限公司;乙醚、甲醇、乙醇(均为分析纯):天津科密欧化学试剂有限公司。
超声波清洗仪(SG8200HPT):上海冠特超声仪器有限公司;微量紫外分光光度计(Nano Drop 1000):美国Thermo公司;连续波长多功能酶标仪(Spectra-Max190):美国Molecular Devices公司;高速冷冻离心机(H1-16KR):湖南可成仪器设备有限公司;荧光定量 PCR 仪(Light Cycler Nano):Hoffmann-La Roche有限责任公司;紫外-可见光光度计(L5S):上海仪电分析仪器有限公司;真空冷冻干燥机(CTFD-12S):青岛永合创信电子科技有限公司。
1.3.1 刺梨渣多酚的制备
准确称取20 g刺梨果鲜渣,加入200 mL 60%的乙醇,采用超声波辅助提取(温度50℃、350 W、提取时间60 min)后,抽滤,再采用真空旋转蒸发仪去除滤液中的乙醇[11]。参考黄颖等[12]的方法提取纯化刺梨渣多酚并冻干,得到冻干的刺梨渣多酚。采用福林酚法[13]测得刺梨渣多酚中多酚质量分数为58.81%。
1.3.2 动物分组与处理
SPF级健康雄性小鼠50只,体质量为18 g~20 g,适应性喂养1周后,根据体质量随机分为空白组、模型组(BC)、刺梨渣多酚低剂量组(RRTP-LD)、刺梨渣多酚中剂量组(RRTP-MD)、刺梨渣多酚高剂量组(RRTP-HD),每组 10只,低、中、高剂量分别按 50、100、200 mg/(kg bw)剂量进行灌胃(灌胃剂量参照周宏炫等[11]方法),空白组和模型组灌胃等剂量的生理盐水。实验期间,空白组给予基础饲料,其余各组给予高脂饲料进行饲养,实验时间60 d。实验结束前12 h禁食不禁水,乙醚麻醉后、眼眶取血,收集血液,离分,放入-80℃冰箱保存,用于后续生理生化指标分析。迅速解剖出肝脏、脂肪等,称重后,分装于离心管中,放入-80℃冰箱保存,用于后续生理生化指标分析。高脂饲料配方参照美国营养学会标准《纯化型生长繁殖饲料-AIN-93G》[14]配制,配方为基础饲料78.8%、蛋黄粉10%、猪油10%、胆固醇1%、胆酸盐0.2%。
1.3.3 体长、腰围、脏器指数和Lee's指数
小鼠的体长(cm):指从鼻尖到肛门的长度;小鼠的腰围(cm):用卷尺测定小鼠腹部经过剑突与后肢间垂直距离中点一周的长度。脏器指数和Lee's指数计算公式如下。
1.3.4 生理生化指标测定
参考试剂盒说明书,分别检测血清中TC、MDA、HDLC、TG、LDL-C 的含量和 GSH-Px、T-SOD、CAT 的活性。
1.3.5 实时定量聚合酶链式反应
采用Trizol总RNA提取试剂从肝脏组织样品中提取总RNA,检测OD260nm/OD280nm后,参照试剂盒反转录为cDNA,并进行扩增。根据2-ΔΔCt法计算各基因相对表达量[15],引物序列如表1。
表1 引物序列
Table 1 Primer sequences
下游HMG-CoAr GACCAACCTTCTACCTCAGCAAG ACAACTCACCAGCCATCACAGT SREBP-1c GGCCATCGACTACATCCGCTTC CGTCTCCACCACTTCGGGTT ACC CATCCGGCGACTTACGTTC AAACTTATCCCTTGCTCGGAA FASN TCAACCTGCTCCTGAAGCCGAA GCCTCAGAGCGACAATATCCAC Nrf2 CCTTCCTCTGCTTGTGTTGAGT GGCTGGGACTTGTGTTCAGT HO-1 AGCATGTCCCAGGATTTGTC GTACAAGGAGGCCATCACCA β-actin ACGTCAGGTCATCACTATCG GGCATAGAGGTCTTTACGGATG基因名称 引物序列(5′→3′)上游
实验数据均用SPSS 22.0软件one-wayANOVA进行统计分析,以平均值±标准差表示,结果采用Duncan显著性差异检验,P<0.05表示差异显著。
刺梨渣多酚对小鼠生长状况的影响如表2所示。
表2 刺梨渣多酚对小鼠生长状况的影响(n=10)
Table 2 Effects of polyphenol in Rosa roxburghii residue on the growth condition of mice(n=10)
注:同列不同字母表示实验各组之间存在显著差异(P<0.05)。
组别初期体质量/g终期体质量/g腰围/cmLee's指数/(g/cm)腹腔脂肪质量/g空白组 28.12±1.22a 46.33±1.85d 8.86±0.10d 3.11±0.14c 1.38±0.16c BC 28.54±1.18a 58.21±1.56a 10.94±0.14a 3.98±0.11a 2.33±0.13a RRTP-LD 28.87±1.41a 55.55±1.93ab 10.06±0.22b 3.81±0.14a 2.08±0.12a RRTP-MD 28.55±1.50a 52.04±1.28bc 9.40±0.21c 3.53±0.12b 1.70±0.16b RRTP-HD 28.18±1.02a 50.77±1.87c 9.28±0.31c 3.48±0.15b 1.62±0.15b
实验小鼠生长状况可直观反应机体健康状况。而体质量、腰围、Lee's指数和腹腔脂肪质量是评价机体肥胖常用的参数。动物饲养期间,生长发育良好,无疾病、无死亡。与空白组相比,模型组小鼠终期体质量、腰围、Lee's指数和腹腔脂肪质量均显著增加(P<0.05),分别增加了25.64%、23.48%、27.97%和68.84%,说明构建的肥胖模型稳定,可以作为对照组进行后续研究。与模型组比,各剂量组刺梨渣多酚均可降低实验小鼠终期体质量和腰围;中剂量和高剂量降低Lee's指数和腹腔脂肪质量显著(P<0.05),而低剂量可降Lee's指数和腹腔脂肪质量,但不显著(P≥0.05)。说明,刺梨渣多酚有抑制长期高脂膳食小鼠机体脂肪囤积的作用。
刺梨渣多酚对小鼠血清脂质水平的影响如表3所示。
表3 刺梨渣多酚对小鼠血清脂质水平的影响(n=10)
Table 3 Effects of polyphenol in Rosa roxburghii residue on the serum lipid level in mice(n=10)
注:同列不同字母表示实验各组之间存在显著差异(P<0.05)。
组别TG含量/(mmol/L)TC含量/(mmol/L)LDL-C含量/(mmol/L)HDL-C含量/(mmol/L)空白组 1.46±0.11c 3.76±0.16d 0.73±0.03d 1.74±0.06a BC 2.24±0.12a 5.80±0.14a 1.98±0.05a 0.86±0.08d RRTP-LD 2.06±0.12a 4.94±0.11b 1.86±0.08a 1.03±0.06c RRTP-MD 1.68±0.09b 4.01±0.13c 1.50±0.04b 1.29±0.08b RRTP-HD 1.52±0.14b 3.81±0.14c 1.31±0.02c 1.17±0.04b
长期高脂膳食会诱发机体脂代谢紊乱,而TG、TC、LDL-C及HDL-C水平,是机体脂代谢的关键生化指标。由表3可知,与空白组相比,模型组小鼠血清中TG、TC、LDL-C含量显著升高(P<0.05),分别升高了53.42%、54.26%和171.23%,显著降低HDL-C的含量(P<0.05)。而刺梨渣多酚干预后,各剂量组均可降低小鼠血清中TG、TC、LDL-C的含量,升高HDL-C的含量。其中高剂量组和中剂量组可显著降低TG、TC、LDL-C的含量(P<0.05),显著升高 HDL-C 含量(P<0.05);而低剂量可显著降低 TC 含量(P<0.05),显著升高HDL-C含量(P<0.05)。以上结果表明,刺梨渣多酚可改善长期高脂膳食引起的实验小鼠血清脂代谢紊乱。
刺梨渣多酚对小鼠血清氧化应激的影响如表4所示。
表4 刺梨渣多酚对小鼠血清氧化应激的影响(n=10)
Table 4 Effects of polyphenol in Rosa roxburghii residue on the oxidative stress in mice serum(n=10)
注:同列不同字母表示实验各组之间存在显著差异(P<0.05)。
组别MDA含量/(nmol/mL)CAT活性/(U/mL)GSH含量/(mmol/mL)T-SOD活性/(U/ng prot)GSH-Px活性/(U/mL)空白组 52.11±2.47d 25.19±0.76a 35.16±1.31a 92.55±2.45a 185.25±6.77a BC 78.22±1.72a 16.33±0.69d 19.87±1.14e 54.91±2.12e 115.71±5.81d RRTP-LD 73.39±1.19b 18.14±0.51c 25.19±1.17d 61.07±2.04d 127.09±8.39bc RRTP-MD 66.15±1.87c 20.62±0.68bc 28.36±1.16c 69.95±1.93c 135.19±9.12c RRTP-HD 63.89±1.44c 21.29±0.90b 31.36±1.23b 76.05±1.53b 143.13±5.19b
现已研究表明,长期高脂膳食会诱发机体肥胖,而肥胖常伴随着氧化应激作用。由表4可知,与空白组相比,模型组MDA含量显著升高了50.11%(P<0.05),CAT活性、T-SOD活性,GSH-Px活性和GSH含量均显著降低(P<0.05)。而给予刺梨渣多酚干预后,低、中、高剂量组均可显著降低 MDA 含量(P<0.05),分别降低了6.17%、15.43%和18.32%;与模型组相比,低、中、高剂量组均可显著升高CAT活性、GSH含量、T-SOD 活性和 GSH-Px活性(P<0.05),其中 CAT活性分别升了11.08%、26.27%和30.37%,GSH含量分别升了26.77%、42.73%和57.83%,T-SOD活性分别升高了11.22%、27.39%和38.50%,GSH-Px活性分别升高了9.83%、16.84%和23.70%。以上结果表明,刺梨渣多酚可提高机体抗氧化能力,减少因长期高脂膳食引起的机体肝脏脂肪囤积而引起的氧化应激损伤。
刺梨渣多酚对高脂膳食小鼠肝脏胆固醇代谢关键基因mRNA表达量的影响如图1所示。
图1 刺梨渣多酚对高脂膳食小鼠肝脏胆固醇代谢关键基因mRNA表达量的影响(n=10)
Fig.1 Effects of polyphenol in Rosa roxburghii residue on the mRNA expression of key genes in cholesterol metabolism in highfat diet mice liver(n=10)
不同字母表示各实验组之间存在显著差异(P<0.05)。
肝脏作用脂质合成、组配、重塑、分解等重要代谢器官,因此,在肥胖模型的研究中,肝脏是重要的研究部位。由图1可知,与空白组相比,高脂膳食可显著上调小鼠肝脏组织 HMG-CoAr、SREBP-1c、ACC、FASN mRNA表达量(P<0.05),模型组,分别上调了34.18%、36.95%、29.02%和39.57%。给予刺梨渣多酚干预后,低、中、高剂量组均可显著(P<0.05)下调 SREBP-1c和FASN mRNA表达量,其中SREBP-1c mRNA表达量分别下调了12.28%、15.15%和19.69%,FASN mRNA表达量分别下调了11.00%、24.01%和29.04%;中、高剂量组HMG-CoAr和ACC mRNA表达量下调显著(P<0.05),而低剂量组有下调HMG-CoAr和ACC mRNA的趋势,但不显著(P≥0.05)。低、中、高剂量组下调HMG-CoAr mRNA表达量分别为4.86%、17.37%和30.10%,下调ACC mRNA表达量分别为5.71%、15.15%和19.69%。说明刺梨渣多酚可减少机体因高脂膳食机体肝脏胆固醇的合成,降低脂肪酸从头合成速率。
刺梨渣多酚对高脂膳食小鼠肝脏Nrf2/HO-1信号通路的影响如图2。
图2 刺梨渣多酚对高脂膳食小鼠肝脏Nrf2/HO-1信号通路的影响
Fig.2 Effects of polyphenol in Rosa roxburghii residue on the Nrf2/HO-1 signaling pathway in high-fat diet mice liver
不同字母表示各实验组之间存在显著差异(P<0.05)。
Nrf2是体内调控氧化还原平衡的重要转录因子,可通过Nrf2/HO1通路发挥其抗氧化应激的作用。由图2可知,高脂膳食可降低小鼠肝脏Nrf2、HO-1 mRNA表达量。与空白组相比,模型组Nrf2和HO-1 mRNA表达量分别下降了57.13%和70.39%。而给予刺梨渣多酚干预后,均可显著上调Nrf2和HO-1 mRNA表达量(P<0.05),低、中、高剂分别上调 Nrf2 mRNA 表达量为40.71%、69.91%和87.85%,上调HO-1 mRNA表达量为39.34%、61.25%和77.39%。以上结果表明,刺梨渣多酚可通过激活Nrf2/HO-1信号通路,降低高脂膳食诱发的机体氧化应激损伤。
健康与养身,饮食是关键,不但要营养均衡,更要注重膳食平衡。随着人们生活方式和生活习惯的改变,肥胖及其伴随的慢性病,如糖尿病、心脑血管疾病、高血压等严重影响着人们的健康生活。2016年,中国肥胖人数多达9 000万,而且年轻化趋势增加明显[16-19]。肥胖是指体内脂肪细胞数和脂肪组织增加及体脂率异常的现象,是由于大量脂肪在腹腔大网膜、皮下等组织囤积导致的,与遗传、生理及生活方式有关,而高脂膳食、运动量少更容易导致机体肥胖[20]。机体的健康是各种关系的综合,是相对平衡的动态过程,当能量长期摄入大于消耗,过剩的能量就会以脂肪囤积。因此,采用长期高脂膳食小鼠或大鼠构建肥胖模型是世界公认的方式[21-22]。本实验结果表明,模型组小鼠体质量、腰围、Lee's指数和腹腔脂肪质量均显著(P<0.05)高于正常饲料饲喂的空白组,说明模型构建稳定,这与以往的研究结果相一致[23-24]。
血液中的胆固醇主要以LDL-C和HDL-C的形式存在,HDL-C可以将血液中胆固醇运送到肝脏,并分解为胆酸后排泄,而LDL-C将血液中的胆固醇运送到周围组织加以利用。而长期高脂膳食,会增加血清中游离脂肪酸、胆固醇及甘油三脂的含量[25-26]。因此,血清中的TC、TG、LDL-C和HDL-C水平反应机体脂代谢情况,也是临床上肥胖诊断的关键指标[21],长期高脂膳食会引起机体脂肪沉积,进而引起脂质代谢异常[27-29]。目前,果品、蔬菜、茶及加工生产过程产生的果渣、边角料、废弃物等多酚类物质的研究表明,天然植物多酚类物质在调节脂质代谢方面发挥着积极作用,但其作用机制复杂,靶点多,还需深入研究[30]。如苹果多酚能改善高脂膳食大鼠脂代谢紊乱的作用,并对因高脂膳食诱发的动脉粥样硬化具有很好的预防作用[31];葡萄籽多酚能降低高脂膳食大鼠血浆载脂蛋白B100、TG和LDL-C的作用,改善高脂膳食机体脂代谢[32];绿茶多酚对机体脂代谢紊乱的研究及应用相对较成熟[33-35]。本实验结果表明,模型组TC、TG及LDL-C的含量增加,而HDL-C的含量降低,刺梨渣多酚干预后可改善长期高脂膳食引起的血清脂代谢紊乱,其具体作用机制还有待进一步研究。肝脏作为机体脂代谢的重要场所,负责机体脂质的合成、分解、排泄等。HMG-CoAr和SREBP-1c是胆固醇稳态的最重要调节剂之一,也是胆固醇生物合成的限速酶[36-37]。高脂膳食可以增加HMG-CoAr和SREBP-1c的活性,使胆固醇在肝脏的合成增加,而刺梨渣多酚干预后,可下调HMG-CoAr和SREBP-1c的活性,抑制肝脏胆固醇的合成。这与文献报道的石榴皮多酚[38]、山楂多酚[39]、绿茶多酚[40]等在脂代谢方面的研究结果相一致。而ACC和FASN是脂肪酸从头合成的关键调节剂[41],其活性的增加,可以提高脂肪酸的从头合成速率。刺梨渣多酚可下调ACC和FASN的活性,降低脂肪酸的从头合成速率,进而减缓食物中脂质在机体内的蓄积。
长期高脂膳食会造成机体营养过剩,引起细胞内能量物质(如游离脂肪酸、葡萄糖等)增加,促使线粒体代谢加快,氧自由基生成增多,破坏机体氧化-抗氧化平衡,进而诱发机体氧化应激;而过量的活性氧(reactive oxygen species,ROS)又反作用于线粒体,损害其功能,进一步加剧机体的氧化应激[42]。氧自由基和脂质氧化的最终产物MDA,可直观地反映机体氧化应激损伤的强弱[43-44];SOD、GSH-Px、GSH 和 CAT 在维持机体氧化-抗氧化平衡上起着关键作用,其中GSH可以清除机体氧化应激产生的大量自由基[45],GSH-Px可降低机体氧化应激过程产生的过氧化物的量[46],而CAT可将过氧化氢分解为水和氧[47],减少其对机体的氧化应激损伤。本实验结果表明,刺梨渣多酚可降低高脂膳食小鼠血清中MDA的含量,升高CAT、T-SOD、GSHPx、GSH活性及含量,刺梨渣多酚可以提高机体抗氧化能力,减少因长期高脂膳食引起的机体肝脏脂肪囤积引起的氧化应激损伤。Nrf2是体内调控氧化还原平衡的重要转录因子,激活后的Nrf2可诱导HO-1降低细胞及线粒体内自由基,减少氧化应激损伤[48-50]。因此,Nrf2/HO-1信号通路成为抗氧化及治疗各种疾病的新的靶点[51-52]。本实验结果表明,刺梨渣多酚具有降低因高脂膳食诱发的机体氧化应激的作用,其作用机制可能与激活Nrf2/HO-1信号通路有关。
本文研究刺梨渣多酚对高脂膳食小鼠机体脂代谢的干预效果发现,长期高脂膳食会诱发机体脂代谢紊乱,而刺梨渣多酚可减缓因高脂膳食引起的小鼠体质量增加、降低Lee's指数和腹腔脂肪质量,可减少因长期高脂膳食引起的机体肝脏脂肪囤积引起的氧化应激损伤。其作用机制与刺梨渣多酚下调SREBP-1c、FASN、HMG-CoAr、ACC mRNA 表达量,减少机体因高脂膳食引起机体肝脏胆固醇的合成,降低脂肪酸从头合成速率有关。另外,刺梨渣多酚可通过激活Nrf2/HO-1信号通路,降低高脂膳食诱发的机体氧化应激损伤。
[1]田宏平,刘春艳,牛建均,等.刺梨果渣改善肠胃道菌群失调的应用及分析[J].食品安全导刊,2021(26):164-165.TIAN Hongping,LIU Chunyan,NIU Jianjun,et al.Application and analysis of Roxburgh rose residue in improving gastrointestinal microflora disorder[J].China Food Safety Magazine,2021(26):164-165.
[2]李小鑫,郑文宇,王晓芸,等.刺梨果渣软糖配方工艺优化研究[J].食品科技,2013,38(10):145-150.LI Xiaoxin,ZHENG Wenyu,WANG Xiaoyun,et al.Optimazation of preparation processing of soft sweet with Roxburgh pomace[J].Food Science and Technology,2013,38(10):145-150.
[3]张瑜,李小鑫,罗昱,等.刺梨果渣发酵饲料蛋白的工艺研究[J].中国酿造,2014,33(11):75-80.ZHANG Yu,LI Xiaoxin,LUO Yu,et al.Fermentation technology of feed protein with Roxburgh rose pomace[J].China Brewing,2014,33(11):75-80.
[4]张想,李立郎,杨娟,等.发酵刺梨果渣膳食纤维润肠通便功能研究[J].食品与发酵科技,2021,57(2):30-34.ZHANG Xiang,LI Lilang,YANG Juan,et al.Study on the moistening and laxative function of dietary fiber from fermented Roxburgh Ros epomace[J].Food and Fermentation Sciences&Technology,2021,57(2):30-34.
[5]夏洁,薛浩岩,贾祥泽,等.刺梨果渣水不溶性膳食纤维提取工艺优化[J].现代食品科技,2020,36(7):227-234.XIA Jie,XUE Haoyan,JIA Xiangze,et al.Extraction optimization of water-insoluble dietary fiber from Rosa Roxburghii Tratt fruit po-mace[J].Modern Food Science and Technology,2020,36(7):227-234.
[6]周笑犁,卢颖,朱坤珑,等.刺梨果渣多糖的发酵制备工艺优化及其抗氧化活性研究[J].食品研究与开发,2019,40(14):24-29.ZHOU Xiaoli,LU Ying,ZHU Kunlong,et al.Optimization of polysaccharide from Rosa Roxburghii Tratt pomace by fermentation and its antioxidant activity[J].Food Research and Development,2019,40(14):24-29.
[7]代燕丽,邹宇晓,刘凡,等.植物多酚干预脂质代谢紊乱作用机制研究进展[J].中国中药杂志,2015,40(21):4136-4141.DAI Yanli,ZOU Yuxiao,LIU Fan,et al.Review:Plant polyphenols modulate lipid metabolism and related molecular mechanism[J].China Journal of Chinese Materia Medica,2015,40(21):4136-4141.
[8]AL-MUAMMAR M N,KHAN F.Obesity:The preventive role of the pomegranate(Punica granatum)[J].Nutrition,2012,28(6):595-604.
[9]李建科,李国秀,赵艳红,等.石榴皮多酚组成分析及其抗氧化活性[J].中国农业科学,2009,42(11):4035-4041.LI Jianke,LI Guoxiu,ZHAO Yanhong,et al.Composition of pomegranate peel polyphenols and its antioxidant activities[J].Scientia Agricultura Sinica,2009,42(11):4035-4041.
[10]FUHRMAN B,VOLKOVA N,AVIRAM M.Pomegranate juice polyphenols increase recombinant paraoxonase-1 binding to highdensity lipoprotein:Studies in vitro and in diabetic patients[J].Nutrition,2010,26(4):359-366.
[11]周宏炫,黄颖,谭书明,等.刺梨多酚对急性酒精中毒大鼠的解酒和护肝作用[J].食品科学,2021,42(17):163-169.ZHOU Hongxuan,HUANG Ying,TAN Shuming,et al.Anti-alcoholic and hepatoprotective effects of polyphenols from the fruit of Rosa Roxburghii Tratt.in rats with acute alcoholism[J].Food Science,2021,42(17):163-169.
[12]黄颖,谭书明,陈萍,等.蜂蜜多酚提取物对大鼠急性酒精性肝损伤的保护作用[J].食品科学,2020,41(21):154-159.HUANG Ying,TAN Shuming,CHEN Ping,et al.Protective effect of polyphenols extracted from honey against acute alcoholic liver injury in rats[J].Food Science,2020,41(21):154-159.
[13]LI A N,LI S,LI H B,et al.Total phenolic contents and antioxidant capacities of 51 edible and wild flowers[J].Journal of Functional Foods,2014,6:319-330.
[14]REEVESP G,NIELSENF H,FAHEYG C.AIN-93 purified diets for laboratory rodents:Final report of the American institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet[J].The Journal of Nutrition,1993,123(11):1939-1951.
[15]YOUY M,RENT,ZHANGS Q,et al.Hypoglycemic effects of Zanthoxylum alkylamides by enhancing glucose metabolism and ameliorating pancreatic dysfunction in streptozotocin-induced diabetic rats[J].Food&Function,2015,6(9):3144-3154.
[16]Trends in adult body-mass index in 200 countries from 1975 to 2014:A pooled analysis of 1698 population-based measurement studies with 19.2 million participants[J].The Lancet,2016,387(10026):1377-1396.
[17]SALGADOWJr,SANTOSJSD,SANKARANKUTTYAK,etal.Nonalcoholic fatty liver disease and obesity[J].Acta Cirurgica Brasileira,2006,21(S1):72-78.
[18]PETERSON L R.Obesity and insulin resistance:Effects on cardiac structure,function,and substrate metabolism[J].Current Hypertension Reports,2006,8(6):451-456.
[19]MAS,CUTTER J,TANC E,et al.Associations of diabetes mellitus and ethnicity with mortality in a multiethnic Asian population:Data from the 1992 Singapore national health survey[J].American Journal of Epidemiology,2003,158(6):543-552.
[20]World Health Organization.Global health risks:Mortality and burden of disease attributable to selected major risks[R].Geneva:World Health Organization,2009.
[21]LIN S,THOMAS T,STORLIEN L,et al.Development of high fat diet-induced obesity and leptin resistance inC57Bl/6J mice[J].International Journal of Obesity,2000,24(5):639-646.
[22]WOODS S C,SEELEY R J,RUSHING P A,et al.A controlled highfat diet induces an obese syndrome in rats[J].The Journal of Nutrition,2003,133(4):1081-1087.
[23]ZOUTD,LIS,WANGB,et al.Curcumin improves insulin sensitivity and increases energy expenditure in high-fat-diet-induced obese mice associated with activation of FNDC5/irisin[J].Nutrition,2021,90:111263.
[24]YUANG F,TANM J,CHENX E.Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice[J].Food&Function,2021,12(17):7897-7908.
[25]SUAREZ-SANCHEZ F,VAZQUEZ-MORENO M,HERRERALOPEZ E,et al.Association of rs2000999 in the haptoglobin gene with total cholesterol,HDL-C,and LDL-C levels in Mexican type 2 diabetes patients[J].Medicine,2019,98(39):e17298.
[26]NAMJ H,SHIN J,JANG S I,et al.Associations between lipid profiles of adolescents and their mothers based on a nationwide health and nutrition survey in South Korea[J].BMJ Open,2019,9(3):e024731.
[27]刘宏睿.冷暴露对高脂日粮诱导的肥胖小鼠脂质代谢的影响[D].大庆:黑龙江八一农垦大学,2020.LIU Hongrui.Effects of cold exposure on lipid metabolism in obese mice induced by high-fat diet[D].Daqing:Heilongjiang Bayi Agricultural University,2020.
[28]徐晓慧,杨静,王黎君,等.2017年中国人群高血清低密度脂蛋白胆固醇归因疾病负担研究[J].中华流行病学杂志,2020,41(6):839-844.XU Xiaohui,YANG Jing,WANG Lijun,et al.Burden of disease attributed to high level serum low-density lipoprotein cholesterol in China in 2017[J].Chinese Journal of Epidemiology,2020,41(6):839-844.
[29]RANA J S,VISSER M E,ARSENAULT B J,et al.Metabolic dyslipidemia and risk of future coronary heart disease in apparently healthy men and women:The EPIC-Norfolk prospective population study[J].International Journal of Cardiology,2010,143(3):399-404.
[30]SCALBERT A,MANACH C,MORAND C,et al.Dietary polyphenolsand the prevention of diseases[J].Critical Reviews in Food Science and Nutrition,2005,45(4):287-306.
[31]王振宇,周丽萍,刘瑜.苹果多酚对小鼠脂肪代谢的影响[J].食品科学,2010,31(9):288-291.WANG Zhenyu,ZHOU Liping,LIU Yu.Effect of apple polyphenol on lipid metabolism in mice[J].Food Science,2010,31(9):288-291.
[32]DEL BAS J M,FERNáNDEZ-LARREA J,BLAY M,et al.Grape seed procyanidins improve atherosclerotic risk index and induce liver CYP7A1 and SHP expression in healthy rats[J].FASEB Journal,2005,19(3):479-481.
[33]BAJERSKA J,WOZNIEWICZ M,JESZKA J,et al.Green tea aqueous extract reduces visceral fat and decreases protein availability in rats fed with a high-fat diet[J].Nutrition Research,2011,31(2):157-164.
[34]MARON D J,LU G P,CAI N S,et al.Cholesterol-lowering effect of a theaflavin-enriched green tea extract:A randomized controlled trial[J].Archives of Internal Medicine,2003,163(12):1448-1453.
[35]MATSUYAMA T,TANAKA Y,KAMIMAKI I,et al.Catechin safely improved higher levels of fatness,blood pressure,and cholesterol in children[J].Obesity,2008,16(6):1338-1348.
[36]XU S J,JEONG S J,LI G,et al.Repeated ethanol exposure influences key enzymes in cholesterol and lipid homeostasis via the AMPK pathway in the rat prefrontal cortex[J].Alcohol,2020,85:49-56.
[37]ZHANG L J,YANG B,YU B P.Paeoniflorin protects against nonalcoholic fatty liver disease induced by a high-fat diet in mice[J].Biological&Pharmaceutical Bulletin,2015,38(7):1005-1011.
[38]梁俊,李建科,刘永峰,等.石榴皮多酚对脂变L-02肝细胞HMG-CoA还原酶mRNA表达的影响[J].食品与生物技术学报,2013,32(9):957-961.LIANG Jun,LI Jianke,LIU Yongfeng,et al.Effects of pomegranate peel polyphenols(PPPs)on the expression of HMG-CoA reductase mRNA of human L-02 hepatocyte[J].Journal of Food Science and Biotechnology,2013,32(9):957-961.
[39]YE X L,HUANG W W,CHEN Z,et al.Synergetic effect and structure-activity relationship of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors from Crataegus pinnatifida Bge[J].Journal of Agricultural and Food Chemistry,2010,58(5):3132-3138.
[40]BURSILL C A,ROACH P D.Modulation of cholesterol metabolism by the green tea polyphenol(-)-epigallocatechin gallate in cultured human liver(HepG2)cells[J].Journalof Agricultural and Food Chemistry,2006,54(5):1621-1626.
[41]NISTHULA A,ARCHANA P R,ANTO R J,et al.Virtual screeningbased identification of novel fatty acid synthase inhibitor and evaluation of its antiproliferative activity in breast cancer cells[J].Journal of Molecular Graphics and Modelling,2021,105:107903.
[42]王斌.高脂膳食对淋巴细胞亚群的影响及白藜芦醇的干预作用[D].无锡:江南大学,2014.WANGBin.Effect of high-fat diet on the lymphocytes subsets and the preventive effect of resveratrol[D].Wuxi:Jiangnan University,2014.
[43]ISLAM M T.Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders[J].Neurological Research,2017,39(1):73-82.
[44]刘合生,戚向阳,曹少谦,等.杨梅乙醇提取物对小鼠酒精性肝损伤的保护作用[J].中国食品学报,2014,14(8):34-40.LIU Hesheng,QI Xiangyang,CAO Shaoqian,et al.The protective effect of ethanol extract of Chinese bayberry fruit on alcohol-induced liver injury in mice[J].Journal of Chinese Institute of Food Science and Technology,2014,14(8):34-40.
[45]KUZU M,YILDIRIM S,KANDEMIR F M,et al.Protective effect of morin on doxorubicin-induced hepatorenal toxicity in rats[J].Chemico-Biological Interactions,2019,308:89-100.
[46]WANG K,ZHAO Z G,JI W.Bisphenol A induces apoptosis,oxidative stress and inflammatory response in colon and liver of mice in a mitochondria-dependent manner[J].Biomedicine&Pharmacotherapy,2019,117:109182.
[47]ZHOUT,ZHANGY J,XUD P,et al.Protective effects of lemon juice on alcohol-induced liver injury in mice[J].BioMed Research International,2017,2017:7463571.
[48]SOHRABI F,DIANAT M,BADAVI M,et al.Gallic acid suppresses inflammation and oxidative stress through modulating Nrf2-HO-1-NF-κB signaling pathways in elastase-induced emphysema in rats[J].Environmental Science and Pollution Research International,2021,28(40):56822-56834.
[49]SHU G W,QIU Y H,HAO J,et al.Nuciferine alleviates acute alcohol-induced liver injury in mice:Roles of suppressing hepatic oxidative stress and inflammation via modulating miR-144/Nrf2/HO-1 cascade[J].Journal of Functional Foods,2019,58:105-113.
[50]TANG W,JIANG Y F,PONNUSAMY M,et al.Role of Nrf2 in chronic liver disease[J].World Journal of Gastroenterology,2014,20(36):13079-13087.
[51]LEI P,ZHAO W,PANG B,et al.Broccoli sprout extract alleviates alcohol-induced oxidative stress and endoplasmic reticulum stress in C57BL/6 mice[J].Journal of Agricultural and Food Chemistry,2018,66(22):5574-5580.
[52]PENGD F,LU H,ZHU S M,et al.NRF2antioxidant response protects against acidic bile salts-induced oxidative stress and DNA damage in esophageal cells[J].Cancer Letters,2019,458:46-55.
Effect of Polyphenol in Rosa roxburghii Residue on the Lipid Metabolism and Oxidative Stress in High-fat Diet Mice
安玉红,朱德星,胡文森,等.刺梨渣多酚对高脂膳食小鼠脂代谢及其诱发的氧化应激的影响[J].食品研究与开发,2022,43(10):77-84.
AN Yuhong,ZHU Dexing,HU Wensen,et al.Effect of Polyphenol in Rosa roxburghii Residue on the Lipid Metabolism and Oxidative Stress in High-fat Diet Mice[J].Food Research and Development,2022,43(10):77-84.