植物来源的胰脂肪酶抑制剂研究进展

郭子雨1,姚雨含2,刘涛3,赵军2*

(1.新疆大学生命科学与技术学院,新疆 乌鲁木齐 830046;2.新疆药物研究所维吾尔药重点实验室,新疆 乌鲁木齐 830004;3.新疆医科大学公共卫生学院,新疆 乌鲁木齐 830011)

摘 要:可食植物来源的活性成分具有毒性低、生物特性多样的特点,从中寻找具有显著功效的有效部位和成分一直是功能性食品等健康产品研发的重要来源。近年来从植物中发现了多种对胰脂肪酶(pancreatic lipase,PL)有显著抑制活性的有效成分。这些成分通过抑制PL的活性可减少人体消化系统对摄入食品中脂肪成分的吸收程度,在肥胖、高脂血症等疾病的辅助治疗上显示了良好的效果。基于此,该文综述近年来植物来源的胰脂肪酶抑制剂研究进展。

关键词:胰脂肪酶抑制剂;肥胖症治疗;天然产物;中药活性成分;高血脂

胰脂肪酶(pancreatic lipase,PL)是脂肪消化吸收过程的关键酶,抑制胰脂肪酶的活性可以减少人体对脂肪的吸收。目前临床上普遍使用的PL抑制剂是奥利司他(Xenical)。该化合物是一种半合成脂抑素衍生物,具有较强的选择性抑制胃脂肪酶和PL作用,能减少水解物的膳食脂肪数量,改善机体对热量的吸收。然而,该成分存在一定的不良反应,如肝肾损害、营养不良以及腹部痉挛、脂肪性大便、胀气等胃肠道反应[1]。因此,寻找活性显著的PL抑制剂仍然是当今天然产物研究的热点。植物中包括多酚、黄酮、皂苷、生物碱等多种有效成分。来源于植物,特别是可食植物的PL抑制剂以其毒性较低、副作用小的特点备受人们的关注。

多种植物提取物具有显著的PL抑制作用,如绿茶、菠菜、糙米、花椒、肉桂、山茶、薄荷、金盏花、牛膝、向日葵、亚麻和蜂胶等[2-7]。菠菜提取物能通过抑制PL活性而表现出良好的降血脂作用;该提取物能显著降低高脂血症大鼠的摄食量、体重增加、脂质过氧化反应,恢复高脂血症大鼠的脂质代谢和抗氧化水平[8]。虎杖提取物对PL活性有明显的抑制作用,且以剂量依赖的方式抑制3T3-L1前脂肪细胞中脂肪细胞分化,减少脂滴的形成以及降低3-磷酸甘油脱氢酶(glycerol-3-phosphate dehydrogenase,GPDH)的活性。经该提取物处理后,脂肪细胞分化相关蛋白(adipocyte differentiation-related protein,ADRP)、围脂滴蛋白、成脂转录因子的表达水平均显著降低,磷酸化AMP活化蛋白激酶(phosphorylated AMP-activated protein kinase,pAMPK)水平升。因此,虎杖的减肥作用可能与其通过抑制PL活性和脂肪生成而下调脂肪堆积相关[9]。中药复方制剂大柴胡汤可以剂量依赖的方式抑制小鼠PL活性,并降低血清甘油三酯水平。研究发现制剂中缺少黄芩时,大柴胡汤的脂肪酶抑制活性显著降低。即大柴胡汤中的黄芩对脂肪酶抑制功效起着重要作用[10]。基于上述文献报导,本文对近年来植物有效成分抑制PL活性的研究概况展开综述,以期为PL抑制剂的开发提供参考。

1 多酚类

蔬菜水果中富含多酚类活性物质,此类成分可结合蛋白质,起到抑制消化酶的作用,能降低肠道腔中的游离脂肪酸和单酰甘油,从而减少甘油三酯的吸收。不同酚类以及酚类与其它成分之间会发生多种相互作用,对PL活性产生促进或抑制等不同的影响[11]。(-)-表没食子儿茶素没食子酸酯(epigallocatechin gallate,EGCG)、(-)-没食子儿茶素没食子酸酯(gallocatechin gallate,GCG)、(-)-表儿茶素没食子酸酯(epicatechin gallate,ECG)和(-)-表没食子儿茶素没食子酸酯(epigallocatechin,EC)4种茶多酚(EGCG 类似物)对PL活性均有抑制作用,其抑制率大小顺序为EGCG>GCG>ECG>EC。随EGCG类似物浓度的增加,PL活性先快速下降后缓慢下降。PL二级结构的α-螺旋含量随EGCG类似物浓度的增加而降低,其顺序同样为EGCG>GCG>ECG>EC,说明α-螺旋在其活性发挥上起重要作用。EGCG、ECG和EC对PL产生的荧光均有动态和静态猝灭作用,而GCG仅有静态猝灭作用。此外,EGCG类似物可诱导PL自组装成复合物,该复合物的流体动力学半径与抑制率密切相关。动力学分析表明,EGCG类似物能通过降低PL酶的转变中点温度减少PL酶的热稳定性,且不与PL催化位点结合非竞争性非共价抑制PL活性[12]。绿茶的3次水浸泡物对 PL 的半数抑制浓度分别为(12.3±2.8)、(6.2±0.3)、(4.0±1.1)mg/mL。EGCG分别占3次浸泡物的4.3%、6.0%和6.3%。花色苷含量也如此。绿茶二次浸泡物能有效降低高脂饲料致小鼠血浆甘油三酯浓度的升高,其作用的成分为EGCG[13]。表没食子儿茶素和表没食子儿茶素没食子酸酯表现出较高的PL抑制作用(IC50为 387.2、237.3、391.2 μmol/L),且符合竞争性抑制,对反应速度的抑制具有剂量依赖性[14]。茶黄素-3,3′-二没食子酸、茶黄素-3′-没食子酸酯和茶黄素对PL有抑制作用,IC50分别为 1.9、4.2、3.0 μ/L 和大于 10 μ/L。TFdiG与底物浓度呈混合抑制。在计算机模拟中发现茶黄素与Asn263和Asp206结合,在活性位点附近形成一个口袋,含有没食子酰基的茶黄素会扰乱His264的质子化[15]

柿子多酚(persimmon tannin,PT)是柿子果实降血脂作用的主要成分。PT对PL有较高的亲和力,并以非竞争性方式抑制PL的活性,IC50为0.44 mg/mL。氢键和π-π堆积是相互作用的主要原因。PT对胃肠道PL的显著抑制活性可能是其降脂作用的机制之一[16]。富含单宁的南洋杉种皮提取物可通过抑制PL活性间接抑制甘油三酯吸收,显著降低了小鼠血浆甘油三酯水平。动力学检测表明,南洋杉种皮单宁是一种有效的PL抑制剂,抑制类型为抛物线型、非竞争型,抑制常数Ki1和 Ki2分别为(332.7±146.1)μg/mL 和(321.2±93.0)μg/mL;可进一步有效降低高脂饲料诱导的小鼠血清甘油三酯的升高[17]。从五倍子乙醇提取物分离得到的化合物(1)亲蛋白-fb、化合物(2)2-O-二没二酰基-1,3,4,6-四-O-没食子酰基-β-D-葡萄糖、化合物(3)1,2,3,4,6-五-O-没食子酰基-β-D-葡萄糖、化合物(4)1,2,4,6-四-O-没食子酰基-β-D-葡萄糖和化合物(5)3-羟基-5-甲氧基苯酚1-O-β-D-葡萄糖对PL有较强的抑制作用,其IC50值在(30.6±2.4)mmol/L~(3.5±0.5)mmol/L之间。化合物(2)对3T3-L1细胞的脂肪细胞分化也有明显的抑制作用[18]

咖啡酰奎尼酸类是一类分子量较小的多酚类成分。该类成分有多种异构体,可通过与Ser153、His264和Asp177催化三联体同时结合以及相互作用的竞争模式抑制PL活性。3-咖啡酰奎宁酸及其异构体4、5-咖啡酰奎宁酸、3,4-、3,5-和 4,5-二咖啡酰奎宁酸对PL活性的抑制作用 IC50值分别为 1.10、1.23、1.24、0.252、0.591 mmol/L和0.502 mmol/L。它们的结合亲和力在-8.4 kcal/mol~-9.5 kcal/mol之间,与对数 IC50的线性相关系数为0.893,Spearman相关系数为1.0。咖啡酰奎宁酸及其异构体会与氢键和疏水键相互作用相结合,具有较好的稳定性[19]

从葡萄醇提物中分离得到的二苯乙烯类成分对PL 有较强的抑制作用,其 IC50值为(6.7±0.7)mol/L[20]。桑树皮中的2-芳基苯并呋喃衍生物对PL有较强的抑制作用(IC50为 0.09 μmol/L~0.92 μmol/L)[21]。海洋褐藻提取物中的间苯三酚聚合物氟呋内酯A和7-邻苯三酚对PL有较强的抑制作用,其IC50在37.2 μmol/L~12.7 μmol/L之间[22]。莽草酸具有抑制脂肪酶活性的作用,其抑制类型是混合型可逆抑制,抑制常数Ki=4.30 mg/mL,Ki′=3.28 mg/mL。荧光淬灭试验表明,莽草酸使脂肪酶发生荧光淬灭,Tyr、Trp、Phe等生色基团由蛋白质内部的疏水区向亲水环境暴露,使荧光强度降低,从而导致酶活性降低[23]

2 黄酮类

苦瓜的甲醇、二氯甲烷亚和乙酸乙酯提取物具有较强的脂肪酶抑制活性,IC50值分别为(2.06±0.02)、(1.52±0.02)mg/mL 和(1.31±0.02)mg/mL。黄酮苷和槲皮素是其甲醇提取物的主要成分[24]。从辣椒中发现的4种酚类化合物咖啡酸、对香豆酸、槲皮素和辣椒素,对猪胰脏脂肪酶活性的具有抑制活性和结合特性,抑制作用最强的是槲皮素,IC50为(6.1±2.4)μmol/L,其次是对香豆酸[(170.2±2.6)μmol/L]和咖啡酸[(401.5±32.1)μmol/L],而辣椒素和辣椒提取物的抑制活性很低[25]。牛膝在一些地区的烹饪中作为配料使用,从该植物根部得到的3个新的黄烷酮-查尔酮型双黄酮化合物对PL有显著的抑制作用,对α-葡萄糖苷酶也有抑制活性,且强于阿卡波糖,在餐后血糖的调控上具有潜在的应用价值[26]。甜橙皮提取物对PL有很强的非竞争性抑制作用,其发挥作用的主要是二氢黄酮类成分橙皮苷。橙皮苷通过氢键和范德华力与PL在非催化位点处发生相互作用,这个过程属于自发进行的放热反应,并且不会改变PL的二级结构[27]。白木香中的5-羟基-7,4’-二甲氧基黄酮、木犀草素-7,3’,4’-三甲醚和 5,3’-二羟基-7,4’-二甲氧基黄酮对 PL 活性的抑制率均在6%~53%之间[28]。巴可巴甲醇提取物在体外对PL活性有抑制作用,其主要成分异鼠李素和车前草苷B能降低小鼠血浆甘油三酯(triglyceride,TG)水平[29]

银杏叶提取物被广泛应用于高脂血症等代谢性疾病的治疗中,其所含的银杏异黄酮和银杏双黄酮对PL均有较为显著的抑制作用,IC50值在2.9 μmol/L~12.78 μmol/L之间[30]。中药桑白皮中的6个黄酮类成分(桑皮酮C、桑根酮D、苦参酮C、苦参酮G、桑色素和桑辛素)对PL有较为显著的抑制作用,IC50值在0.77 μmol/L~20.56 μmol/L 之间;其中活性最显著的桑根酮D可以通过氢键与PL催化三联体中的关键氨基酸Ser152产生较强的相互作用[31]。另一种桑科植物柘木根黄酮化合物柘木黄酮A和柘木黄酮D对PL有显著的抑制作用,IC50值分别为 6.5、9.0 μmol/L[32]。从三尖杉中得到 5,7,4’-三羟基-6,8-二戊烯基异黄酮和库德拉黄酮C能显著抑制胰腺脂肪酶活性,IC50值分别为 65.0、17.0 μmol/L[33-34]

3 花色苷及原花青素

原花青素的PL抑制活性与其聚合度有关,聚合度越高,活性越强。随着原花青素平均聚合度的增加,葡萄籽原花青素对PL活性的抑制作用和对内源蛋白荧光的猝灭作用均增强[35]。沙棘叶提取物具有较高的PL抑制活性,其活性组分为以表没食子儿茶素和表阿夫儿茶精为主要成分的原花青素低聚物,聚合度约为5[36]。豇豆提取物的对PL有较强的抑制作用(IC50为15.2 μg/mL)。花青素和花青素-3-葡萄糖苷是该提取物所含的主要成分,对PL抑制作用的IC50值分别为28.29、188.28 μmol/L,两者对 PL 是非竞争性抑制,Ki分别为27.28、88.97 μmol/L,表明花青素的糖基化显著降低了对PL的抑制。因此,食用豇豆可通过抑制脂肪消化酶减少脂肪的吸收,继而达到减肥降脂的功效[37]。番荔枝果实和果皮提取物对PL也具有较强的抗PL活性,其所含成分中花青素的抑制活性远强于花青素-3,5-二葡萄糖苷[38]

4 皂苷类

人参皂甙 Rb1、Rg1、Rg3 和 K 在 100 μg/mL 时分别显著抑制的PL活性(抑制率分别为43%、47%、75%、55%),其中Rg3的作用最强,最低有效浓度为6.25 μg/mL[39]。刺五加总皂苷对脂肪消化的关键酶PL具有较好的抑制活性,从中分离得到的硅藻苷F、党参皂苷B、长春花素3-O-β-D-葡萄糖醛酸苷6’-O-甲酯和石膏素3-O-β-D-葡萄糖醛酸苷对PL均具有显著的抑制作用,IC50值分别为 0.22、0.25、0.26、0.29 mmol/L[40]。熊果酸硬脂酰葡萄糖苷(ursolic acid stearoylglucoside,UASG)对高脂饮食诱导肥胖有很好的降血脂作用。饲喂含UASG高脂饲料小鼠的血脂指标、体重、子宫旁脂肪组织重量、肝脏甘油三酯(TG)及各脏器重量均明显降低,大鼠的粪便含量和粪便中甘油三酯含量也显著增加。UASG预处理可抑制大鼠口服脂肪乳后血浆甘油三酯水平的升高。此外,UASG在2.5 mg/mL浓度下对PL活性有明显的抑制作用,说明UASG可能通过抑制PL活性来预防高脂饮食诱导的小鼠肥胖[41]

5 萜类

白桦酸是一种存在于多种可食植物中的五环三萜类成分,该化合物在 1.5 μmol/L~100 μmol/L 浓度范围内剂量依赖性的抑制PL活性(IC50为21.1 μmol/L),并可通过cAMP依赖的磷酸二酯酶抑制作用介导脂解作用,加速脂肪动员[42]。熊果酸对PL也有较好的抑制作用,在该化合物C-28引入含苯环的侧链可能显著提升对PL的抑制率[43]。银杏内酯A、B和白果内酯对PL 有明显的抑制作用(IC50为 22.9、90.0、60.1 μg/mL),其基团可与PL关键氨基酸在PL结合袋中发生相互作用。这些成分是银杏叶提取物的降血脂作用的主要药效物质基础[44]。丹参提取物对PL的抑制活性,呈浓度依赖性,IC50值为(3.54±0.22)mg/mL,其成分隐丹参酮具有明显的 PL 抑制活性,IC50为(6.86±0.43)μmol/L[45]

6 醌类及蒽酮类

白花菜根中的萘醌类成分白花丹醌有明显的抗脂肪作用,对PL抑制的 IC50值为(82.08±9.47)μmol/L,抑制动力学为混合型。体内试验也表明该成分能通过减少油红O染色和降低甘油三酯含量发挥明显的抗脂肪作用[46]。决明根乙酸乙酯提取物在250 μg/mL浓度下对PL的抑制率为74.3%,其中双蒽醌类成分决明素A抑制活性最强,IC50值为41.8 mmol/L[47]。从三尖杉茎叶中分离得到氧杂蒽酮类化合物(cudracuspixanthone P)能通过抑制PL的活性减少脂肪酸刺激的肝细胞中的脂肪积聚,该成分可用于代谢性疾病的治疗[48]

7 其它

木质素可自发地与PL结合形成PL-木质素复合物,从而提高酶的活性。PL-木质素复合物的形成是疏水和静电相互作用引起的吸热反应。木质素与PL之间存在非辐射能量传递,结合过程符合二次指数衰减函数。木质素-PL复合物的形成,会改变酶的α-螺旋含量,增加其侧链的刚性[49]。荔枝种子蛋白质对PL有明显的抑制作用,IC50为73.1 μg/mL[50]。研究发现中国海绵(Xestospongia testudinaria)中的溴化多不饱和脂类化合物对PL有显著的抑制活性(IC50为3.11μmol/L),与阳性对照奥利司他(IC50为0.78 μmol/L)相似。末端(E)-烯炔官能团、链中的二炔基和甲酯基都是该类化合物PL抑制剂活性的关键官能团,体内试验也显示了显著的降脂效果[51]。芦荟凝胶传统上用于治疗糖尿病、肥胖症和传染病,其浓度在0.4 mg/mL时对PL的抑制率85.56%明显高于奥利司他70.58%[52]

参考文献:

[1] 黄秋菊,李玉兰.奥利司他疗效研究及不良反应[J].现代医药卫生,2018,34(19):3025-3027.

[2]SEO D B,JEONG H W,KIM Y J,et al.Fermented green tea extract exhibits hypolipidaemic effects through the inhibition of pancreatic lipase and promotion of energy expenditure[J].British Journal of Nutrition,2017,117(2):177-186.

[3] LEE Y M,KIM Y S,LEE Y,et al.Inhibitory activities of pancreatic lipase and phosphodiesterase from Korean medicinal plant extracts[J].Phytotherapy Research,2012,26(5):778-782.

[4]SELLAMI M,LOUATI H,KAMOUN J,et al.Inhibition of pancreatic lipase and amylase by extracts of different spices and plants[J].International Journal of Food Sciences and Nutrition,2017,68(3):313-320.

[5]KIAGE-MOKUA B N,ROOS N,SCHREZENMEIR J.Lapacho tea(Tabebuia impetiginosa)extract inhibits pancreatic lipase and delays postprandial triglyceride increase in rats[J].Phytotherapy Research,2012,26(12):1878-1883.

[6]LIM S M,GOH Y M,KUAN W B,et al.Effect of germinated brown rice extracts on pancreatic lipase,adipogenesis and lipolysis in 3T3-L1 adipocytes[J].Lipids in Health and Disease,2014,13(1):1-9.

[7] SUN X,ZHANG K,JI X,et al.Screening of pancreatic lipase and alpha-glucosidase inhibitors from Chinese dietary herbs[J].China Journal of Chinese Materia Medica,2012,37(9):1319-1323.

[8] PANDA V,SHINDE P,DANDE P.Consumption of Spinacia oleracea(spinach)and aerobic exercise controls obesity in rats by an inhibitory action on pancreatic lipase[J].Archives of physiology and biochemistry,2020,126(3):187-195.

[9]KIM Y S,LEE Y M,KIM J H,et al.Polygonum cuspidatum inhibits pancreatic lipase activity and adipogenesis via attenuation of lipid accumulation[J].BMC Complementary and Alternative Medicine,2013,13(1):282.

[10]MATSUO Y,MATSUMOTO K,INABA N,et al.Daisaikoto inhibits pancreatic lipase activity and decreases serum triglyceride levels in mice[J].Biological and Pharmaceutical Bulletin,2018,41(9):1485-1488.

[11]SOSNOWSKA D,PODSDEK A,REDZYNIA M,et al.Effects of fruit extracts on pancreatic lipase activity in lipid emulsions[J].Plant Foods for Human Nutrition,2015,70(3):344-350.

[12]WANG S,SUN Z,DONG S,et al.Molecular interactions between(-)-epigallocatechin gallate analogs and pancreatic lipase[J].PLoS One,2014,9(11):e111143.

[13]SHIRAI N.The Inhibitory effects of anthocyanin-rich sunrouge tea on pancreatic lipase activity[J].Journal of Oleo Science,2017,66(12):1343-1348.

[14]RAHIM A T M A,TAKAHASHI Y,YAMAKI K.Mode of pancreatic lipase inhibition activity in vitro by some flavonoids and non-flavonoid polyphenols[J].Food Research International,2015,75:289-294.

[15]GLISAN S L,GROVE K A,YENNAWAR N H,et al.Inhibition of pancreatic lipase by black tea theaflavins:Comparative enzymology and in silico modeling studies[J].Food Chemistry,2017,216:296-300.

[16]ZHU W,JIA Y,PENG J,et al.Inhibitory effect of persimmon tannin on pancreatic lipase and the underlying mechanism in vitro[J].Journal of Agricultural and Food Chemistry,2018,66(24):6013-6021.

[17]OLIVEIRA R F,GONÇALVES G A,INÁCIO F D,et al.Inhibition of pancreatic lipase and triacylglycerol intestinal absorption by a pinhã-o coat(Araucaria angustifolia)extract rich in condensed tannin[J].Nutrients,2015,7(7):5601-5614.

[18]KWON O J,BAE J S,LEE H Y,et al.Pancreatic lipase inhibitory gallotannins from Galla Rhois with inhibitory effects on adipocyte differentiation in 3T3-L1 cells[J].Molecules,2013,18(9):10629-10638.

[19]HU B,CUI F,YIN F,et al.Caffeoylquinic acids competitively inhibit pancreatic lipase through binding to the catalytic triad[J].International Journal of Biological Macromolecules,2015,80:529-535.

[20]KIM Y M,LEE E W,EOM S H,et al.Pancreatic lipase inhibitory stilbenoids from the roots of Vitis vinifera[J].International Journal of Food Sciences and Nutrition,2014,65(1):97-100.

[21]HA M T,TRAN M H,AH K J,et al.Potential pancreatic lipase inhibitory activity of phenolic constituents from the root bark of Morus alba L[J].Bioorganic&Medicinal Chemistry Letters,2016,26(12):2788-2794.

[22]EOM S H,LEE M S,LEE E W,et al.Pancreatic lipase inhibitory activity of phlorotannins isolated from Eisenia bicyclis[J].Phytotherapy Research,2013,27(1):148-151.

[23]吴克刚,谭炜彤,柴向华,等.莽草酸对脂肪酶抑制作用的研究[J].粮食与油脂,2019,32(5):20-25.

[24]MARRELLI M,MORRONE F,ARGENTIERI M P,et al.Phytochemical and biological profile of Moricandia arvensis(L.)DC.:an inhibitor of pancreatic lipase[J].Molecules,2018,23(11):2829.

[25]AIEJANDRA ISBEL M G,EMILIO A P,ÁNGEL GABRIEL D S,et al.In vitro inhibition of pancreatic lipase by polyphenols:A kinetic,fluorescence spectroscopy and molecular docking study[J].Food Technology and Biotechnology,2017,55(4):519-530.

[26]CHATSUMPUN N,SRITULARAK B,LIKHITWITAYAWUID K.New biflavonoids with α-glucosidase and pancreatic lipase inhibitory activities from Boesenbergia rotunda[J].Molecules,2017,22(11):1862.

[27]黄睿.柑橘类黄酮分光测定法比较及其抗氧化与胰脂肪酶抑制功效评价[D].杭州:浙江大学,2019.

[28]IBRAHIM M,WONG F,BAKRI Y M,et al.Interactions of flavone and steroid from A.subintegra as potential inhibitors for porcine pancreatic lipase[J].Current Computer-aided Drug Design,2020,16:698-706.

[29]NAKASHIMA S,OHTA T,NAKAMURA S,et al.Caffeic acid derivatives from Bacopa monniera plants as inhibitors of pancreatic lipase activity and their structural requirements[J].Natural Product Communications,2016,11(12):1855-1858.

[30]LIU P K,WENG Z M,GE G B,et al.Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors:Inhibition potentials and mechanism[J].International Journal of Biological Macromolecules,2018,118:2216-2223.

[31]HOU X D,GE G B,WENG Z M,et al.Natural constituents from cortex mori radicis as new pancreatic lipase inhibitors[J].Bioorganic Chemistry,2018,80:577-584.

[32]JO Y H,KIM S B,LIU Q,et al.Benzylated and prenylated flavonoids from the root barks of Cudrania tricuspidata with pancreatic lipase inhibitory activity[J].Bioorganic&Medicinal Chemistry Letters,2015,25(17):3455-3457.

[33]JEONG J Y,JO Y H,LEE K Y,et al.Optimization of pancreatic lipase inhibition by Cudrania tricuspidata fruits using response surface methodology[J].Bioorganic&Medicinal Chemistry Letters,2014,24(10):2329-2333.

[34]KIM Y S,LEE Y,KIM J,et al.Inhibitory activities of Cudrania tricuspidata leaves on pancreatic lipase in vitro and lipolysis in vivo[J].Evidence-based Complementary and Alternative Medicine,2012,2012:878365.

[35]GONCALVES R,MATEUS N,DE FREITAS V.Study of the interaction of pancreatic lipase with procyanidins by optical and enzymatic methods[J].Journal of Agricultural and Food Chemistry,2010,58(22):11901-11906.

[36]KOGA K,HISAMURA M,KANETAKA T,et al.Proanthocyanidin oligomers isolated from Salacia reticulata leaves potently inhibit pancreatic lipase activity[J].Journal of Food Science,2013,78(1):105-111.

[37]VIJAYARAJ P,NAKAGAWA H,YAMAKI K.Cyanidin and cyanidin-3-glucoside derived from Vigna unguiculata act as noncompetitive inhibitors of pancreatic lipase[J].Journal of food biochemistry,2019,43(3):e12774.

[38]YOU Q,CHEN F,WANG X,et al.Inhibitory effects of muscadine anthocyanins on α-glucosidase and pancreatic lipase activities[J].Journal of Agricultural and Food Chemistry,2011,59(17):9506-9511.

[39]LI Z,JI G E.Effects of various ginsenosides and ginseng root and ginseng berry on the activity of pancreatic lipase[J].Food Science and Biotechnology,2017,26(3):767-773.

[40]LI F,LI W,FU H,et al.Pancreatic lipase-inhibiting triterpenoid saponins from fruits of Acanthopanax senticosus[J].Chemical and Pharmaceutical Bulletin,2007,55(7):1087-1089.

[41]KAZMI I,AFZAL M,RAHMAN S,et al.Antiobesity potential of ursolic acid stearoyl glucoside by inhibiting pancreatic lipase[J].European Journal of Pharmacology,2013,709(1-3):28-36.

[42]KIM J,LEE Y S,KIM C S,et al.Betulinic acid has an inhibitory effect on pancreatic lipase and induces adipocyte lipolysis[J].Phytotherapy Research,2012,26(7):1103-1106.

[43]李子达.六种中药脂肪酶抑制活性成分的研究[D].南宁:广西中医药大学,2018:22-40.

[44]BUSTANJI Y,AL-MASRI I M,MOHAMMAD M,et al.Pancreatic lipase inhibition activity of trilactone terpenes of Ginkgo biloba[J].Journal of Enzyme Inhibition and Medicinal Chemistry,2011,26(4):453-459.

[45]MARRELLI M,GRANDE F,OCCHIUZZI M A,et al.Cryptotanshinone and tanshinone IIA from Salvia miltiorrhiza Bunge(Danshen)as a new class of potential pancreatic lipase inhibitors[J].Natural Product Research,2019(119):1-4.

[46]PAI S A,MARTIS E A F,JOSHI S G,et al.Plumbagin exerts antiobesity effects through inhibition of pancreatic lipase and adipocyte differentiation[J].Phytotherapy Research,2018,32(8):1631-1635.

[47]KUMAR D,KARMASE A,JAGTAP S,et al.Pancreatic lipase inhibitory activity of cassiamin A,a bianthraquinone from Cassia siamea[J].Natural Product Communications,2013,8(2):195-198.

[48]JO Y H,KIM S B,AHN J H,et al.Xanthones from the stems of Cudrania tricuspidata and their inhibitory effects on pancreatic lipase and fat accumulation[J].Bioorganic Chemistry,2019,92:103234.

[49]ZHANG J,XIAO L,YANG Y,et al.Lignin binding to pancreatic lipase and its influence on enzymatic activity[J].Food Chemistry,2014,149:99-106.

[50]MHATRE S V,BHAGIT A A,YADAV R.Proteinaceous pancreatic lipase inhibitor from the seed of Litchi chinensis[J].Food Technology and Biotechnology,2019,57(1):113-118.

[51]LIANG L F,WANG T,CAI Y S,et al.Brominated polyunsaturated lipids from the Chinese sponge Xestospongia testudinaria as a new class of pancreatic lipase inhibitors[J].European Journal of Medicinal Chemistry,2014,79:290-297.

[52]TAUKOORAH U,MAHOMOODALLY M F.Crude Aloe vera gel shows antioxidant propensities and inhibits pancreatic lipase and glucose movement in vitro[J].Advances in Pharmacological Sciences,2016,2016:3720850.

Research Advances in Pancreatic Lipase Inhibitors from Plants

GUO Zi-yu1,YAO Yu-han2,LIU Tao3,ZHAO Jun2*
(1.College of Life Sciences&Technology,Xinjiang University,Urumqi 830046,Xinjiang,China;2.Xinjiang Key Laboratory for Uighur Medicines,Xinjiang Institute of Materia Medica,Urumqi 830004,Xinjiang,China;3.College of Public Health,Xinjiang Medical University,Urumqi 830011,Xinjiang,China)

Abstract:Active ingredients derived from plants,especially edible plants are characterized by low toxicity and diverse biological characteristics.Finding effective parts/ingredients with significant efficacy has always been an important source of research and development of health products such as drugs and functional foods.In recent years,a variety of effective components have been found in plants that have significant inhibitory activities against pancreatic lipase(PL).By inhibiting the activity of PL,these components can reduce the absorption degree of fat components in the ingested food in the digestive system of the human body,showing good effects in the adjuvant treatment of obesity,hyperlipidemia and other diseases.Based on this,this paper reviews the research progress of plant derived pancreatic lipase inhibitors in recent years.

Key words:pancreatic lipase inhibitor;obesity treatment;natural products;active ingrediengts of traditional Chinese medicine;hyperlipidemia

DOI:10.12161/j.issn.1005-6521.2021.08.035

作者简介:郭子雨(1996—),女(汉),硕士研究生,研究方向:天然产物的研究与开发。

*通信作者:赵军,男(汉),高级工程师,博士,研究方向:天然产物的研究与开发。

引文格式:

郭子雨,姚雨含,刘涛,等.植物来源的胰脂肪酶抑制剂研究进展[J].食品研究与开发,2021,42(8):212-217.

GUO Ziyu,YAO Yuhan,LIU Tao,et al.Research Advances in Pancreatic Lipase Inhibitors from Plants[J].Food Research and Development,2021,42(8):212-217.

加工编辑:张璐

收稿日期:2020-07-26