基于荧光共振能量转移快速检测食品中的四环素类药物

桂丽娟1,2,梁紫璐2,罗永文3,庄健乐4,毕水莲1*

(1.广东药科大学食品科学学院,广东 中山 528458;2.广东药科大学公共卫生学院,广东 广州 510006;3.华南农业大学兽医学院,广东 广州 510642;4.华南农业大学材料与能源学院,广东 广州 510642)

摘 要:基于上转换发光纳米技术构建荧光共振能量转移体系,快速检测食品中四环素类药物。通过将上转换发光纳米材料作为能量供体,金纳米粒子作为能量受体,建立基于荧光共振能量转移的四环素类药物的检测方法。结果表明,通过荧光量的恢复量来定量游离抗原,得到体系中荧光的恢复量与四环素类抗原浓度(范围在1 ng/mL~100 ng/mL)呈良好的线性关系,可以检测到四环素类药物的最低检出限为0.1 ng/mL。同时,该方法可用于牛奶中四环素药物的检测。通过建立能够检测四环素类药物的上转换发光纳米技术,为四环素类药物食品安全检测提供了一种快速、灵敏、稳定的方法,也为上转换发光纳米技术运用于检测食品中更多的有害物质提供了良好的基础。

关键词:上转换发光纳米材料;荧光共振能量转移;四环素类药物;检测

四环素类药物(tetracyclines,TCs)是一类天然或半合成的抗生素,对多种革兰氏阳性菌和革兰氏阴性菌具有良好的抑菌作用[1-2]。TCs是一种广谱抗生素,常用的包括金霉素、土霉素、四环素和强力霉素[3],因其成本低廉,已被广泛用于禽畜养殖业以预防和治疗疾病,还常添加在饲料中以达到促进生长的目的[4]。随着禽畜养殖业规模化,TCs的广泛和不规则使用,使得TCs的耐药现象日益严重,对动物和人类健康构成潜在的危害,如过敏、肠胃不适及牙齿色素沉着等[5-6]。因此,为了更好地监测TCs的使用和残留,有必要建立一种检测食品中残留TCs的有效方法。

食品中TCs的检测方法有高效液相色谱法[7-8]、液相色谱-串联质谱[9-10]、毛细管电泳[11-12]、酶联免疫检测法和其它生物免疫反应检测法等[13-14]。酶联免疫检测法因易受干扰、不够灵敏常导致结果不够准确[15],而高效液相色谱法和液相色谱-串联质谱等方法通常要求测试样品在处理之前首先被提取、纯化、浓缩和衍生化,比较复杂,费时费力且成本高,以及需要大型昂贵的仪器和专业的技术人员等[16-17],不利于快速、灵敏的检测目标物,因此,建立一种快速、灵敏和稳定的TCs检测方法对于食品安全和质量监测具有重要意义。

上转换发光纳米技术(upconversion fluorescence nanoparticles technology,UPNT)是一种基于上转换发光纳米颗粒(upconverting nanoparticles,UCNPs)的新技术,利用了反斯托克斯发光效应的原理[18-19],形成离子和离子之间的能量等级跃迁。UCNPs是一种新型的荧光材料,能够将长波激发光转换为短波发射光[20],不仅具有独特的光学和化学性质,还具有低毒性、低背景荧光和反斯托克斯位移等特性[21],被广泛用于医学生物学、生物成像、光动力治疗和食品安全等领域[22-24]。但是,由于UCNPs的表面没有亲水性和活性基团,仍不能扩展到某些生物分子的检测,无法与生物分子很好地结合及鉴定,而当UCNPs的结构或构象发生变化后,可作为能量供体用于荧光共振能量转移(fluorescence resonance energy transfer,FRET)[25-26]。FRET是一个非辐射过程,供体的荧光基团与受体的荧光基团的吸收光谱有一定的重叠时,出现荧光能量由供体向受体转移的现象,从而引起荧光淬灭[26-27]。为了提高FRET的效率和灵敏度,合适的能量受体也被需要,常见的能量受体包括贵金属纳米粒子、有机染料和半导体纳米材料等[27-28],其中金纳米颗粒(gold nanoparticles,GNPs)因具有良好的荧光淬灭能力被广泛应用[29]。基于UCNPs和GNPs所构建的FRET体系已被用于检测各种目标物[30-31],但用于检测食品中TCs的研究仍然有限[32]。因此,本文尝试利用UCNPs和GNPs构建FRET模型,通过荧光淬灭的恢复程度对牛奶中的TCs进行定量检测。

1 材料与方法

1.1 材料与试剂

氧化钇(99.99%)、氧化镱(99.99%)、氧化铒(99.99%)、氢氧化钠(NaOH)、氟化钠(NaF)、柠檬酸钠、正硅酸乙酯(tetraethyl orthosilicate,TEOS)、3-氨丙基三乙氧基硅烷(3-amino propyltriethoxysilane,APTES)、正丙醇、无水乙醇(均为分析纯):国药集团化学试剂有限公司;氯金酸(HAuCl4,Au≥47.5%)、聚乙烯吡咯烷酮(polyvinyl pyrrolidone,PVP,平均分子量 58 000)、三羟甲基氨基甲烷(Tris)、溴化钾压片、硼氢化钠(NaBH4,99%)、牛血清白蛋白(bovine serum albumin,BSA,生物试剂)、戊二醛(25%,生物试剂):上海阿拉丁生化科技股份有限公司;四环素类药物抗体(TCs Ab,-20℃保存)、四环素类抗原(TCs Ag-BSA,-20℃保存)、四环素(tetracycline,TC)、强力霉素(doxycycline,DO):美国 Sigma-Aldrich 公司;0.01 mol/L 磷酸盐缓冲溶液(phosphate buffered saline,PBS):广东药科大学食品科学学院食品楼204实验室自制。

1.2 主要仪器和设备

XD-2X/M4600型号X射线衍射仪(X-ray diffraction,XRD):北京普析通用仪器有限公司;Nova Nano SEM 430场发射扫描电子显微镜(scanning electron microscope,SEM):荷兰 FEI公司;JEM-2100F型号透射电子显微镜(transmission electron microscope,TEM):日本电子株式会社;TRIAX 320光谱仪(配备有R928光电倍增管探测器):法国HORIBA Jobin Yvon公司;976 nm激光二极管:美国Coherent Corp公司;UV-2100紫外分光光度计:日本Shimadzu公司;Nicolet iS5傅立叶变换红外光谱仪:美国Thermo Fisher公司。

1.3 方法

1.3.1 上转换发光材料(NaYF4:Yb,Er UCNPs)的合成

采用水热合成法[33-34]进行制备:称取适量的稀土氧化物氧化钇、氧化镱和氧化铒,加入过量的HNO3溶液使其完全溶解,通过加热蒸发以去除多余的HNO3溶液,最后加入去离子水,混匀后即可得到稀土硝酸溶液。然后分别取2.5 mL硝酸钇、1.5 mL硝酸镱和1.2 mL硝酸铒溶液,混合均匀后缓慢加入2 mL 0.5mol/L的柠檬酸钠溶液,超声振荡30 min,然后在混合溶液中缓慢滴加适量的25 mL 1 mol/L NaF溶液,待溶液出现肉眼可见的白色沉淀物后,用NaOH调节溶液的pH值(pH5),磁力搅拌下反应1 h。然后将混合溶液转移到聚四氟乙烯瓶中,密封,并在180℃下保持4 h。待冷却至37℃后,通过离心分离沉淀物,依次用乙醇和去离子水洗涤(至少洗涤3次),最后将洗涤好的沉淀物放入60℃的烘箱中干燥24 h,即可获得上转换发光材料(NaYF4:Yb,Er UCNPs),研磨成粉末备用。

1.3.2 NaYF4:Yb,Er UCNPs的表面修饰

采用改良的Stöber法对其进行修饰[35-36],利用超声将制备好的 40 mg NaYF4:Yb,Er UCNPs 粉末分散于60 mL正丙醇溶液中,搅拌均匀后将混合溶液放入恒温水浴锅中35℃下搅拌40 min,然后分别加入2.5 mL 25%的氨水和20 mL纯水,反应1 h。然后加入正硅酸乙酯和正丙醇溶液的混合溶液(即取25 μL正硅酸乙酯并用20 mL的正丙醇溶液将其溶解),反应4 h。再将0.2 mL APTES溶于30 mL正丙醇溶液中,并将其加入到上述混合溶液中,反应1 h。然后将反应后的溶液转移至离心管中离心,离心后弃上清,得到的沉淀物用乙醇和蒸馏水洗涤3次。最后将其放入60℃烘箱中烘干12 h,即可获得氨基化的上转换纳米粒子NaYF4:Yb,Er UCNPs。

1.3.3 氨基化NaYF4:Yb,Er UCNPs连接四环素类抗体(TCs Ab)

取制备好的氨基化NaYF4:Yb,Er UCNPs粉末20 mg,加入5 mL的PBS使其完全溶解,然后加入1.25 mL 25%戊二醛溶液和100 mg NaBH4,混合后在37℃下反应1 h。反应结束后,将得到的产物进行离心,弃上清液,得到的沉淀用PBS重复洗涤3次,将洗涤好的沉淀物再次超声分散在PBS中,然后取25 μL TCs Ab和100mgNaBH4加入到上述溶液中,37℃摇床反应1h。然后,加入100 mg Tris作为封闭剂,继续反应1 h。反应结束后通过离心得到沉淀物,用PBS洗涤沉淀3次后去掉上清液并用1 mL PBS收集沉淀,得到的TCs Ab-NaYF4:Yb,Er UCNPs于4℃下保存备用。

1.3.4 金纳米颗粒(gold nanoparticles,GNPs)制备及偶联四环素类抗原

采用柠檬酸还原法[37-38]稍作修饰制备GNPs,先用0.021 6 g HAuCl4和240 mL去离子水混合以制备HAuCl4水溶液,然后将溶液转移到三颈圆底烧瓶中,使其加热至100℃,保持10 min。称取0.125 g柠檬酸钠,加入12.5 mL去离子水溶解,将二者的混合溶液加入到上述圆底烧瓶溶液中,溶液颜色由浅黄色变成酒红色后,保持反应30 min,反应结束后,自然冷却到37℃左右加入1 mL去离子水和0.004 2 g PVP的混合溶液,搅拌过夜,得到的GNPs溶液于4℃保存备用。

取上述制备好的GNPs 10 mL,用PBS将溶液的pH值调至8,然后向溶液中加入20 μL TCs Ag-BSA,冰浴中搅拌1 h。接着加入50 mg BSA作为封闭剂,继续搅拌1 h。反应后将溶液转移到离心管中在10 000 r/min下离心10 min,得到沉淀用0.01 mol/L PBS洗涤3次,弃上清液,最后分散在10 mL 0.01 mol/L PBS中,得到GNPs偶联TCsAg-BSA的溶液,即TCsAg-BSA-GNPs。

1.3.5 FRET体系的构建

将 100 μL 25 μg/mL TCs Ab-NaYF4:Yb,Er UCNPs悬浮液添加到一系列含有TCs Ag-BSA溶液的小试管中,反应0.5 h后取适量20 μg/mL TCs Ag-BSA-GNPs溶液添加到各小试管中,然后加入PBS溶液定容至1 mL,37℃摇床反应40 min,反应后用光谱仪进行荧光测定。

1.3.6 基于FRET体系检测牛奶中TCs

取若干个1.5 mL的小试管,加入适量牛奶溶液,然后将相同浓度的BSA、TCs Ag-BSA、DO、TC加入到牛奶溶液中,混合均匀。然后取100 μL 25 μg/mL的TCs Ab-NaYF4:Yb,Er UCNPs加入到上述溶液中,反应0.5 h后加入20 μg/mL TCs Ag-BSA-GNPs溶液适量,接着加入PBS溶液定容,使混合物终浓度为20 ng/mL,置于摇床上37℃反应40 min后,进行荧光测定。

2 结果与讨论

2.1 NaYF4:Yb,Er UCNPs和 GNPs的合成表征

图1~图4为NaYF4:Yb,Er UCNPs和 GNPs的合成表征。

图1 NaYF4:Yb,Er UCNPs的形貌表征图
Fig.1 The appearance characterization image of NaYF4:Yb,Er UCNPs

图2 GNPs的大小和形态表征图
Fig.2 The size and morphology characterization image of GNPs

图3 NaYF4:Yb,Er UCNPs的晶型结构表征和标准卡片对比
Fig.3 The crystal structure characterization of NaYF4:Yb,Er UCNPs,compared with standard cards

图4 氨基化的NaYF4:Yb,Er UCNPs合成表征
Fig.4 The synthesis characterization image of aminofunctionalized NaYF4:Yb,Er UCNPs

作为 FRET 供体和受体,NaYF4:Yb,Er UCNPs和GNPs的形状和大小非常重要。如图1所示,NaYF4:Yb,ErUCNPs的SEM图像显示其分布均匀,直径为60nm~80 nm,符合生物标志物的要求。同时,NaYF4:Yb,Er UCNPs在表面没有亲水性官能团,不具备生物学特性[39],因此需要对其进行表面修饰。修饰后的NaYF4:Yb,Er UCNPs用X射线衍射(XDR)对其进行表征,如图3所示,氨基化 NaYF4:Yb,Er UCNPs与标准卡片 JCPDS NO.16-0334和JCPDS NO.06-0342一致,且没有明显的杂质峰,同时氨基化修饰后与修饰前相比,上转换纳米材料的结构没有受到影响,修饰后的荧光强度增强。图4给出了UCNPs的表面修饰的红外光谱图(Fourier transform infrared spectroscopy,FT-IR),从 FT-IR 图中可看出,修饰前,在 3 417、2 928、2 873 cm-1处出现了强度不一的吸收峰,其中在3 417 cm-1观察到羟基的伸缩振动特征峰;2 928、2 873cm-1等处出现了属于亚甲基的不对称和对称伸缩振动特征峰。氨基修饰后,出现了一个位于1084cm-1处新的吸收峰,同时伴随2 928、2 873cm-1处的吸收峰消失,这归结于二氧化硅键的对称伸缩振动,说明上转换纳米材料已成功被二氧化硅包覆。而在3 251、1 612 cm-1处均出现了由氨基引起的振动峰,这也证明了所制备的NaYF4:Yb,Er UCNPs氨基化修饰成功。

从图2中可看出,通过柠檬酸钠合成法制备的GNPs,形状近似为球形,尺寸相对均匀,为10 nm。同时,利用柠檬酸钠作为还原剂制备出的GNPs能够很好的分散在水中,形成稳定的胶体溶液[23]

2.2 NaYF4:Yb,Er UCNPs 连接 TCs Ab 和 GNPs 连接TCs Ag-BSA的表征

图 5为 976 nm 激发光下 NaYF4:Yb,Er UCNPs的荧光光谱图,图6为GNPs偶联TCs Ag-BSA前后的紫外可见吸收光谱图和TCs Ab-UCNPs的荧光发射光谱图。

图5 976 nm激发光下NaYF4:Yb,Er UCNPs的荧光光谱
Fig.5 Fluorescence spectra of NaYF4:Yb,Er UCNPs in the 976 nm excitation

如图5所示,在 976 nm激发光下 NaYF4:Yb,Er UCNPs可以得到3组荧光特征发射峰:525、542 nm和660 nm,其中541 nm处的荧光强度最强,呈现出明显的绿色荧光,故将其作为响应光谱,后续平台的构建主要看此处的荧光强度变化。此外,通过对UCNPs和TCs-Ab偶联前后的荧光图进行对比,发现偶联后的波长和形状与偶联前相一致,发射峰的位置没有改变,但位于541 nm处荧光强度有所减弱,说明UCNPs已经成功连接上抗体。

GNPs易于与生物分子结合,本研究证实了TCs Ag-BSA-GNPs的成功修饰。从图6可看出,GNPs的紫外可见吸收光谱521 nm(GNPs)红移到了524 nm(TCs Ag-BSA-GNPs)处,这种红移现象说明GNPs已成功偶联上了TCs Ag-BSA,在红移的过程中没有明显的峰展宽,说明GNPs不仅没有聚集现象而且具有良好的分散性[35],同时,偶联TCs Ag-BSA后的GNPs所产生的红外吸收光谱红移后有利于提高FRET体系的灵敏度[40]。还可以看出,当UCNPs和GNPs结合后,能够发生能量共振转移,使得GNPs的吸收光谱和UCNPs的荧光发射光谱具有重叠的光谱,从而导致荧光淬灭。

图6 GNPs、TCs Ag-BSA-GNPs的紫外可见吸收光谱和TCs Ab-UCNPs的荧光发射光谱
Fig.6 UV-vis absorption spectrum of GNPs,TCs Ag-BSA-GNPs and UC fluorescence emission spectrum of TCs Ab-UCNPs

2.3 基于FRET体系检测TCs的结果

在FRET体系中,固定供体和受体的浓度,改变游离TCs Ag-BSA的浓度,976 nm的红外光激发下检测溶液中荧光强度变化,如图7所示。图8为不同浓度的TCs Ag-BSA在不同体系下的荧光强度关系,图9为不同含量的TCs抗原和荧光恢复量(I-I0)的线性关系。

图7 不同浓度的TCs抗原在FRET体系中的荧光光谱
Fig.7 The UC fluorescence spectra image of the FRET system at different concentrations of TCs Ag-BSA

图8 不同浓度的TCs抗原在不同体系下的荧光光谱图
Fig.8 The fluorescence spectra between the different concentration of TCs Ag-BSA and the fluorescent intensity in different system

随着抗原浓度的增加,UCNPs和GNPs之间的距离缩短,能量从供体不断转移至受体,使得UCNPs的荧光强度逐渐增加。图8中I-I0代表荧光淬灭-恢复量(I:加入不同浓度TCs Ag-BSA后的UCNPs-GNPs体系荧光;I0:没有加TCs Ag-BSA的UCNPs-GNPs体系荧光),随着TCs Ag-BSA浓度的增加,体系中的荧光恢复量逐渐增加,直到250 ng/mL荧光强度开始趋于平稳。在0.1 ng/mL~250 ng/mL范围内,荧光强度逐渐增加,在30 ng/mL~100 ng/mL范围内,抗原浓度与UCNPs的荧光强度呈现出了良好的线性关系,相关系数为0.995 67(如图9所示)。当TCs Ag-BSA的浓度超过250 ng/mL,FRET体系的荧光强度趋向于平稳,最低的检测限为0.1 ng/mL,UCNPs和GNPs所产生的荧光淬灭量基本得到恢复。

图9 不同含量的TCs抗原和荧光恢复量(I-I0)的线性关系
Fig.9 The linear relationship image between the different concentration of TCs Ag-BSA and the fluorescence recovery(I-I0)in systems

2.4 将FRET体系应用于牛奶中检测TCs的试验结果

图10为牛奶中不同浓度TCs Ag-BSA荧光光谱图,图11~图12为牛奶中不同浓度的TCs抗原与542 nm处的荧光强度之间以及和荧光恢复量的线性关系,图13为20 ng/mL浓度下BSA、TCs Ag-BSA、DO和TC的荧光强度变化图。

图10 牛奶中不同浓度TCs抗原的荧光光谱图
Fig.10 UC fluorescence spectra of the FRET system at different concentrations of TCs Ag-BSA in the milk

图11 牛奶中不同浓度的TCs抗原与542 nm处的荧光强度之间的线性关系图
Fig.11 The linear relationship between the concentration of TCs Ag-BSA and the UC fluorescent intensity at 542 nm in milk

图12 牛奶中不同TCs抗原浓度和荧光恢复量的线性关系图
Fig.12 The linear relationship between the different concentration of TCs Ag-BSA and the fluorescence recovery in the milk

图13 20 ng/mL浓度下BSA、TCs Ag-BSA、TC和DO在牛奶中的荧光光谱图
Fig.13 Differential fluorescence response of the aptasensor to BSA,TCs Ag-BSA,antibiotic of DO and TC at the same concentration(20 ng/mL)

为了检测牛奶中的TCs,固定供体和受体的浓度,通过添加不同浓度的游离抗原,检测在976 nm的红外光激发下的发光强度变化量。从图11可看出牛奶中的荧光强度随着TCs Ag-BSA浓度的增加而增加,直至100 ng/mL。如图11、图12所示,在0.1 ng/mL~100 ng/mL之间抗原浓度与体系的荧光强度显示出良好的线性相关性,相关系数(R2)高达0.990 93。当TCs Ag-BSA的浓度超过100 ng/mL时,荧光强度趋于稳定,并且基本上恢复了由FRET引起的淬灭,得到检测限为1 ng/mL。这表明该方法适用于牛奶中的TCs检测,所构建的FRET体系对四环素类药物的检测具有良好的灵敏度和特异度。

在UCNPs-GNPs体系中,在牛奶样品中加入BSA的荧光强度与未加之前相比基本没有太大变化,说明BSA不会破坏UCNPs-GNPs体系。然而,添加了TCs Ag-BSA、DO和TC的牛奶样品的荧光强度均增强,说明三者均能与体系中的TCs Ab-UCNPs发生免疫反应,破坏UCNPs和GNPs的FRET体系,使得荧光量恢复。这说明基于UCNPs-GNPs所构建的FRET体系可以运用到牛奶样品中含四环素类药物的检测。

3 结论

本文基于UPNT技术建立的荧光共振能量体系快速检测食品中四环素类兽药残留的方法,具有简便、灵敏、稳定等优点,适用于牛奶中TCs含量的检测,对牛奶中的TCs检测最低检测限为0.1 ng/mL。线性相关度在0.1 ng/mL~100 ng/mL,且操作简单、特异性好,能够很好地解决传统方法的局限,同时也能实现TCs的快速检测。这不仅为食品安全检测提供新思路,也为UPNT运用于检测食品中农兽药残留提供了良好的基础。

参考文献:

[1] GROSSMAN T H.Tetracycline antibiotics and resistance[J].Cold Spring Harbor Perspectives in Medicine,2016,6(4):a025387.

[2]RODRÍGUEZ M P,PEZZA H R,PEZZA L.Simple and clean determination of tetracyclines by flow injection analysis[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2016,153:386-392.

[3] FRITZ J W,ZUO Y.Simultaneous determination of tetracycline,oxytetracycline,and 4-epitetracycline in milk by high-performance liquid chromatography[J].Food Chemistry,2007,105:1297-1301.

[3] FRITZ J W,ZUO Y G.Simultaneous determination of tetracycline,oxytetracycline,and 4-epitetracycline in milk by high-performance liquid chromatography[J].Food Chemistry,2007,105(3):1297-1301.

[4] GRANADOS CHINCHILLA F,RODRÍGUEZ C.Tetracyclines in food and feedingstuffs:from regulation to analytical methods,bacterial resistance,and environmental and health implications[J].Journal of Analytical Methods in Chemistry,2017,2017:1315497.

[5] KIM Y S,KIM J H,KIM I A,et al.A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline[J].Biosensors and Bioelectronics,2010,26(4):1644-1649.

[6]WANG G,ZHANG H C,LIU J,et al.A receptor-based chemiluminescence enzyme linked immunosorbent assay for determination of tetracyclines in milk[J].Analytical Biochemistry,2019,564/565:40-46.

[7]XU H,MI H Y,GUAN M M,et al.Residue analysis of tetracyclines in milk by HPLC coupled with hollow fiber membranes-based dynamic liquid-liquid micro-extraction[J].Food Chemistry,2017,232:198-202.

[8] AL AFY N,SERESHTI H,HIJAZI A,et al.Determination of three tetracyclines in bovine milk using magnetic solid phase extraction in tandem with dispersive liquid-liquid microextraction coupled with HPLC[J].Journal of Chromatography B,2018,1092:480-488.

[9]SERRA COMPTE A,ÁLVAREZ MUÑOZ D,RODRÍGUEZ MOZAZ S,et al.Multi-residue method for the determination of antibiotics and some of their metabolites in seafood[J].Food and Chemical Toxicology,2017,104:3-13.

[10]GAJDA A,NOWACKA KOZAK E,GBYLIK SIKORSKA M,et al.Tetracycline antibiotics transfer from contaminated milk to dairy products and the effect of the skimming step and pasteurisation process on residue concentrations[J].Food Additives&Contaminants,2018,35(1):66-76.

[11]DÍAZ QUIROZ CA,FRANCISCO HERNÁNDEZ CHÁVEZ J,ULLOA MERCADO G,et al.Simultaneous quantification of antibiotics in wastewater from pig farms by capillary electrophoresis[J].Journal of Chromatography B,2018,1092:386-393.

[12]MORENO GONZÁLEZ D,KRULIŠOVÁ M,GÁMIZ GRACIA L,et al.Determination of tetracyclines in human urine samples by capillary electrophoresis in combination with field amplified sample injection[J].Electrophoresis,2018,39(4):608-615.

[13]BAGHANI A,MESDAGHINIA A,RAFIEIYAN M,et al.Tetracycline and ciprofloxacin multiresidues in beef and chicken meat samples using indirect competitive ELISA[J].Journal of Immunoassay and Immunochemistry,2019,40(3):328-342.

[14]ADRIAN J,FERNÁNDEZ F,SÁNCHEZ BAEZA F,et al.Preparation of antibodies and development of an enzyme-linked immunosorbent assay(ELISA)for the determination of doxycycline antibiotic in milk samples[J].Journal of Agricultural and Food Chemistry,2012,60(15):3837-3846.

[15]OUYANG Q,LIU Y,CHEN Q,et al.Rapid and specific sensing of tetracycline in food using a novel upconversion aptasensor[J].Food Control,2017,81:156-163.

[16]JALALIAN S H,KARIMABADI N,RAMEZANI M,et al.Electrochemical and optical aptamer-based sensors for detection of tetracyclines[J].Trends in Food Science&Technology,2018,73:45-57.

[17]MAJDINASAB M.,MISHRA R K,TANG X,et al.Detection of antibiotics in food:New achievements in the development of biosensors[J].TrAC Trends in Analytical Chemistry,2020,127:115883.

[18]LI K,HONG E,WANG B,et al.Advances in the application of upconversion nanoparticles for detecting and treating cancers[J].Photodiagnosis And Photodynamic Therapy,2019,25:177-192.

[19]YAO J,HUANG C,LIU C,et al.Upconversion luminescence nanomaterials:a versatile platform for imaging,sensing,and therapy[J].Talanta,2020,208:120157.

[20]LI H,WANG X,HUANG D,et al.Recent advances of lanthanidedoped upconversion nanoparticles for biological applications[J].Nanotechnology,2020,31(7):072001.

[21]WEN S,ZHOU J,ZHENG K,et al.Advances in highly doped upconversion nanoparticles[J].Nature Communications,2018,9(1):2415.

[22]HU J H,SHI J L,GAO Y Q,et al.808 nm near-infrared light-excited UCNPs@mSiO2-Ce6-GPC3nanocomposites for photodynamic therapy in liver cancer[J].International Journal of Nanomedicine,2019,14:10009-10021.

[23]LIU Y,OUYANG Q,LI H H,et al.Turn-on fluoresence sensor for Hg2+in food based on FRET between aptamers-functionalized upconversion nanoparticles and gold nanoparticles[J].Journal of Agri-cultural and Food Chemistry,2018,66(24):6188-6195.

[24]LIU M,ZHANG X,YAN B,et al.Fluorescent nanoparticles from starch:Facile preparation,tunable luminescence and bioimaging[J].Carbohydrate Polymers,2015,121(15):49-55.

[25]MEHLHORN A,RAHIMI P,JOSEPH Y.Aptamer-based biosensors for antibiotic detection:a review[J].Biosensors,2018,8(2):54.

[26]SU Q,FENG W,YANG D,et al.Resonance energy transfer in upconversion nanoplatforms for selective biodetection[J].Accounts of Chemical Research,2017,50(1):32-40.

[27]WANG C,LI X,ZHANG F.Bioapplications and biotechnologies of upconversion nanoparticle-based nanosensors[J].The Analyst,2016,141(12):3601-3620.

[28]DU J,WANG Y,ZHANG W.Gold nanoparticles-based chemiluminescence resonance energy transferfor ultrasensitive detection of melamine[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2015,149:698-702.

[29]WANG Y,WU Z,LIU Z.Upconversion fluorescence resonance energy transfer biosensor with aromatic polymer nanospheres as the lable-free energy acceptor[J].Analytical Chemistry,2013,85(1):258-264.

[30]JIN B,WANG S,LIN M,et al.Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection[J].Biosens Bioelectron,2017,90:525-533.

[31]WU S,DUAN N,SHI Z,et al.Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb2+and Hg2+[J].Talanta,2014,128:327-336.

[32]ZHANG H,FANG C,WU S,et al.Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline[J].Analytical Biochemistry,2015,489:44-49.

[33]WANG M,MI C,ZHANG Y,et al.NIR-responsive silica-coated NaYbF(4):Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells[J].The Journal of Physical Chemistry C,2009,113(44):19021-19027.

[34]RAFIQUE R,BAEK S H,PHAN L,et al.A facile hydrothermal synthesis of highly luminescent NaYF4:Yb3+/Er3+upconversion nanoparticles and their biomonitoring capability[J].Materials Science and Engineering:C,2019,99:1067-1074.

[35]WANG M,HOU W,MI CC,et al.Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:yb,Er upconversion fluorescent nanoparticles and gold nanoparticles[J].Analytical Chemistry,2009,81(21):8783-8789.

[36]HONG E,LIU L,BAI L,et al.Control synthesis,subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment[J].Materials Science and Engineering:C,2019,105:110097.

[37]DU J,WANG Y,ZHANG W.Gold nanoparticles-based chemiluminescence resonance energy transfer for ultrasensitive detection of melamine[J].Spectrochimica Acta.Part A:Molecular and Biomolecular Spectroscopy,2015,149:698-702.

[38]JI X,SONG X,LI J,et al.Size control of gold nanocrystals in citrate reduction:the third role of citrate[J].Journal of the American Chemical Society,2007,129:13939-13948.

[39]MUHR V,WILHELM S,HIRSCH T,et al.Upconversion nanoparticles:from hydrophobic to hydrophilic surfaces[J].Accounts of Chemical Research,2014,47(12):3481-3493.

[40]LI C,ZUO J,LI Q,et al.One-step in situ solid-substrate-based whole blood immunoassay based on FRET between upconversion and gold nanoparticles[J].Biosensors and Bioelectronics,2017,92:335-341.

Rapid Detection of Residues of Tetracyclines in Food Based on Fluorescence Resonance Energy Transfer Immunoassay

GUI Li-juan1,2,LIANG Zi-lu2,LUO Yong-wen3,ZHUANG Jian-le4,BI Shui-lian1*
(1.College of Food Science,Guangdong Pharmaceutical University,Zhongshan 528458,Guangdong,China;2.College of Public Health,Guangdong Pharmaceutical University,Guangzhou 510006,Guangdong,China;3.College of Veterinary Medicine,South China Agricultural University,Guangzhou 510642,Guangdong,China;4.College of Materials and Energy,South China Agricultural University,Guangzhou 510642,Guangdong,China)

Abstract:Develop fluorescence resonance energy transfer immunoassay based on upconversion fluorescence nanotechnology for the detection of tetracyclines(TCs).A method about the detection of tetracyclines based on fluorescence resonance energy transfer was established that takes the upconversion nanoparticles as an energy donor and gold nanoparticles as an energy acceptor.The free antigen was quantified by the alteration of fluorescence recovery which developed a good linear relationship between the recovery of fluorescence and the concentration of tetracycline antigen(the range was 1 ng/mL to 100 ng/mL),and the minimum detection of tetracycline was 0.1 ng/mL,it also could be used for the detection of tetracyclines in milk.An up-conversion fluorescence nanotechnology capable of detecting tetracyclines had been constructed,providing a rapid,sensitive,and stable method for food safety detection of tetracycline,it also provided a good foundation for upconversion fluorescence nanotechnology to detect more harmful substances in foods.

Key words:upconversion fluorescence nanomaterials;fluorescence resonance energy transfer;tetracyclines;detection

DOI:10.12161/j.issn.1005-6521.2021.08.020

基金项目:国家自然科学基金(31401596);广东省科技计划项目(2014A040401087、2016A020210132);广州市珠江科技新星专项资助项目(201710010003)

作者简介:桂丽娟(1995—),女(回),硕士研究生,研究方向:食品安全。

*通信作者:毕水莲(1982—),女,副教授,博士,研究方向:食品安全。

引文格式:

桂丽娟,梁紫璐,罗永文,等.基于荧光共振能量转移快速检测食品中的四环素类药物[J].食品研究与开发,2021,42(8):119-126.

GUI Lijuan,LIANG Zilu,LUO Yongwen,et al.Rapid Detection of Residues of Tetracyclines in Food Based on Fluorescence Resonance Energy Transfer Immunoassay[J].Food Research and Development,2021,42(8):119-126.

加工编辑:冯娜

收稿日期:2020-07-16