发酵技术是一种古老的食品生物技术[1],通过微生物产生的内在有机催化剂将复杂的有机物质转化为简单的化合物[2],被广泛应用于食品工业,改善食品的营养价值、安全性、感官特性和功能特性[3]。根据发酵过程中的水分含量,将发酵分为固态发酵和液态发酵,根据发酵过程中涉及的微生物来源,有接种发酵和自然发酵[4]。
乳糖不耐受、胆固醇、致敏乳蛋白和素食主义的趋势推动了非乳制品发酵载体的开发,食用种子在世界范围内广泛种植和消费,是能量、矿物质和维生素的极好来源,因此在不同的发酵载体中脱颖而出,在天然食品的营养和健康方面显示出巨大的潜力[5-6]。将发酵技术应用于食用种子及其制品可赋予或提高其加工性能或营养特性[2-3,7]。在发酵食用种子及其制品的研究应用中多采用接种发酵以获得稳定且优质的产品[8],乳酸菌和双歧杆菌是最常用于该类发酵的细菌,此外,枯草芽孢杆菌、真菌(霉菌)也常用于发酵食用种子及其制品[2,9-10]。为了更好地了解发酵技术对食用种子及其制品的影响,本文综述了发酵技术对食用种子及其制品改性的相关应用研究。
微生物利用碳水化合物产生气体、酸和酶,使可食用种子或其制品的淀粉理化特性发生了改变,影响其加工性质,进而使淀粉基食品在质构、口感和风味得到明显的改善[11-12]。
发酵使得种子的淀粉结构和性质发生明显改变,这种改变对于每一种发酵后的淀粉不尽相同。经过发酵后的淀粉颗粒表面遭到侵蚀,淀粉的重均分子量下降,结晶层改变,造成与结晶度呈负相关的淀粉水解敏感性发生改变[11,13-14,15-16]。食用种子及其制品经发酵后其糊化特性也会发生改变,如玉米淀粉和糙米淀粉发酵后的糊化焓发生明显改变[16-17],自然发酵的小麦淀粉具有较低的峰值黏度和最终黏度[11],用植物乳杆菌发酵的高粱的凝胶化温度和回生温度降低,而峰值黏度、热糊黏度、破裂黏度和最终黏度增加[18],自然发酵后的高粱淀粉峰值黏度及回生值增加[13],天然酿酒酵母发酵的玉米淀粉糊化后表观黏度降低[15],金丝雀种子淀粉自然发酵后对溶胀、回生具有更强的抵抗力,发酵后的淀粉具有更好的黏度特征[14]。王旭东等[19]用黑曲霉发酵高粱后其峰值黏度、最低黏度、最终黏度和衰减值明显下降,回升值升高,糊化温度降低,且其水溶指数提高了6倍。
发酵能够提升可食用种子及其制品的食用品质。程鑫[17]将乳酸菌应用于糙米中,发酵后糙米的吸水性能提高,体积膨胀率增大,糙米饭硬度显著降低了29.63%,黏性显著升高了81.88%,使米粒之间黏结性更好,感官品质得到了显著提升。Xing等[20]将戊糖片球菌作为馒头制作的辅助培养物,可提高CO2产量,使得馒头硬度降低并且比容增加,提高了馒头的食用品质。将发酵麦麸添加至馒头原料中可有效改善加工特性,与未发酵的麸皮相比,添加发酵麦麸有效降低了未发酵麸皮对混合粉料的粉质和拉伸性能的不利影响,并增加了面团的黏弹性和面包的体积[21-22]。
发酵食用种子及其制品具有多种多样的营养活性成分,例如天然酚类物质、氨基酸、维生素等,发酵被证明是一种有效强化可食用种子及其制品活性成分的方法。
在发酵过程中,微生物利用其营养成分产生蛋白酶将蛋白质水解,使其可溶性蛋白含量增加,释放出小肽和游离氨基酸,产生γ-氨基丁酸(γ-aminobutyric acid,GABA)。在 Zhang 等[23]、刘红艳[24]、Dai等[25]、Shi等[26]的研究报告中均表明发酵后基质中的可溶性蛋白含量明显上升,Koistinen 等[27]、Shi等[26]、Rizzello 等[28]的研究报告表明其小肽含量明显增加,Shi等[26]、Rizzello等[28]、Mok等[2]、DE Pasquale等[29]的研究报告中表明食用种子及其制品经过发酵后其氨基酸含量明显上升。发酵过程中形成的游离氨基酸有利于产GABA微生物代谢生成GABA。程鑫[17]用乳酸菌发酵糙米的研究结果表明糙米发酵后GABA的含量是原料糙米的3.02倍。Gan等[4]通过数据统计分析表明发酵是有效产生或提高GABA的途径。总之,发酵是一种处理可食用种子及其制品提升蛋白、多肽及氨基酸活性成分含量的有价值的生物处理策略。
天然酚类物质是以可溶性和结合的形式存在于植物中。近年来研究表明发酵可以改变食用种子及其制品的酚类组成和分布。Bei等[30]、吴寒[31]、Ayyash 等[32-33]、Aprodu 等[34]、Dai等[25]、刘红艳[24]、Özkaya等[35]、Chen 等[36]、程鑫[17]、王家琛等[37]的研究报告中均表明经过发酵后基质中总酚含量明显提高且其酚类形式发生变化。大多数研究报告表明发酵增加酚类物质,但并不是所有的发酵都能够引起酚类化合物的增加,如Simwaka等[38]、Zieliński等[39]、CHIBUIKE 等[40]等发酵后样品中酚类物质含量下降。
发酵过程中微生物的代谢通常也会引起活性成分的转化,例如可将大豆异黄酮葡萄糖苷(如大豆苷元)转化为苷元(如大豆苷元)。Handa等[9]、Jeong等[41]研究发现微生物发酵能够转化大豆糖苷型黄酮,使得糖苷形式的黄酮含量降低,糖苷配基异黄酮(大豆苷元、黄豆黄素和染料木黄酮)的含量增加,从而提升大豆的营养品质。酰化石柱糖苷(acylated steryl glucosides,ASGs)已经证明比甾基葡萄糖苷(steryl glucosides,SGs)具有更强的生物活性价值,米糠经米曲霉发酵后3种SGs含量分别下降了约35%,与SGs相比,ASGs的含量在发酵过程中增加了1.5倍,发酵米糠具有更好的生物活性价值[42]。
维生素是人体重要的必需营养素,食用种子是一些维生素良好的天然来源,发酵也会对维生素种类及含量产生影响。例如费氏丙酸杆菌可以合成活性维生素B12,经过7 d的发酵,有效提高了发酵基质的维生素 B12 的含量[43];Zieliński等[44]研究结果表明,液态发酵荞麦后显著增加了D-手性肌醇(维生素B的一种)的含量;Gabriele等[45]用酵母发酵3种菜豆可增加抗坏血酸含量;Aprodu等[34]研究结果表明,不同商品发酵剂对混合谷物面粉发酵时叶酸含量有所下降。
在发酵食用种子及其制品中发现了许多其它的生物活性成分的产生或提高,例如纤维素或半纤维素、有机酸等。Xing等[20]发现与未发酵麦麸相比,发酵麦麸中可溶性膳食纤维含量显著提高;Spaggiari等[46]用鼠李糖乳杆菌发酵麦麸后可溶性阿拉伯木聚糖浓度是原来浓度的3倍;Özkaya等[35]发现发酵燕麦麸皮后发酵样品的可溶性、不溶性和总膳食纤维含量明显高于对照样品;用乳酸菌发酵可食用种子及其制品可产生乳酸;Gupta等[10]用乳酸菌发酵燕麦粉和Shi等[26]用乳酸菌固态发酵玉米和大豆的混合粉后均发现发酵产生了大量的乳酸;王梅等[47]用3种益生菌发酵剂固态发酵豆粕可显著提高其有机酸含量,提高豆粕的营养品质。
一般来说,发酵对可食用种子及其制品的各种营养因子都有不同程度的影响,这可能与微生物介导的生物合成或降解有关。鉴于这些营养活性成分对人体健康的益处,有望利用产生或提高活性成分的微生物来开发富含活性成分的产品。
发酵可以有效降解存在于植物的抗营养因子,例如植酸、单宁、大豆球蛋白等,有效提升可食用种子及其制品的营养特性和安全性。Rezaei等[21]、刘红艳[24]、Chibuike等[40]、Yildirim 等[48]、Gabriele 等[45]、Simwaka 等[38]、Spaggiari等[46]、DE Pasquale 等[29]等的研究报告中表明发酵能够明显降低发酵基质的植酸成分。Shi等[26]、Zhang等[23]研究发现发酵能够显著降低豆粕中的大豆球蛋白和β-伴大豆球蛋白,Simwaka等[38]、DE Pasquale等[29]、刘红艳[24]、Chibuike 等[40]等研究发现经过发酵后发酵基质中的单宁含量明显降低。DE Pasquale等[29]、张拓[49]发现发酵能够有效降解玉米烯酮。因此,微生物发酵技术成为有效去除抗营养因子的加工策略。
发酵后的食用种子通常含有更丰富的活性成分,这些活性成分使得发酵产品及其提取物具有多种生物活性,如抗氧化、抗高血压、抗癌和减脂等。
发酵可以影响食用种子及其制品中的活性成分,从而改变其抗氧化能力,发酵后食用种子及其制品提取物体外抗氧化活性见表1。
表1 发酵后食用种子及其制品提取物体外抗氧化活性
Table 1 Antioxidant activity extracted from edible seeds and their products after fermentation
注:—代表与同列上行内容一致。
发酵基质 发酵菌种 提取溶剂 发酵后抗氧化能力 参考文献羽扇豆/藜麦 罗伊氏乳杆菌 水 1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)、2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐[2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate),ABTS]自由基清除能力显著提高Ayyash等[32]小麦 — — ABTS+自由基清除能力提高,DPPH自由基清除能力略微下降 —小麦 灵芝 — DPPH自由基清除能力、·OH自由基能力、铁氰化钾还原力和超氧阴离子自由基清除能力均显著提高寇娟妮等[3]豆渣 枯草芽孢杆菌 乙醇 DPPH自由基清除能力增加了6.4倍 Mok等[2]燕麦 米根霉 & 乳酸菌 80%乙醇 DPPH自由基清除能力、铁离子还原力(ferric ion reducing antioxidant power,FRAP)均增强吴寒[31]混合面粉 乳酸菌混合剂 酸化甲醇 DPPH自由基清除能力增加 Aprodu等[34]荞麦粉 14种乳酸菌少孢根霉80%甲醇—6种乳酸菌发酵后ABTS+自由基清除能力增加10种乳酸菌发酵后,FRAP增加ABTS+自由基清除能力降低,FRAP增加Zieliński等[39]燕麦 红曲霉 & 枯草芽孢杆菌 — DPPH自由基和ABTS+自由基清除能力显著提高 Chen等[36]大麦 泡盛曲霉 甲醇 抗氧化活性、金属螯合活性、ABTS+自由基清除能力均明显提高 Sandhu等[1]6种谷物 双孢蘑菇 甲醇 DPPH自由基清除能力、还原力、超氧阴离子自由基清除能力、亚铁离子螯合能力均明显提高刘红艳[24]
如表1所示,种子及其制品发酵后,其提取物的体外抗氧化能力大多数会有明显地提高。在细胞试验和动物实验中也有此发现,如从发酵藜麦淀粉中提取纯化的小肽能使角质形成细胞NCTC2544,受到氧化应激后表现出抗氧化活性[28];对小鼠灌胃灵芝发酵小麦水提物,可以提高D-半乳糖致衰小鼠血清和肝脏中的抗氧化酶活力,提高小鼠对氧自由基的抵抗能力,降低氧自由基过氧化损伤,延缓D-半乳糖的致衰作用[3]。可见,发酵技术可以有效提升种子及其制品抗氧化能力。
研究表明,近年来一些发酵食用种子及其制品在体内外均有降压作用。血管紧张素转换酶(angiotensin-converting enzyme,ACE)在控制血压方面发挥着核心作用。Ruan等[50]发现发酵豆粕中肽含量和体外抑制ACE活性提高,发酵豆粕中的多肽导致自发性高血压大鼠在3 h时收缩压显著降低。全麦羽扇豆、藜麦和小麦经罗伊氏乳酸杆菌3种发酵谷物均有较好的ACE抑制作用[32]。双歧杆菌发酵的羽扇豆和藜麦也具有显著的ACE抑制活性[33]。枯草芽孢杆菌发酵的豆粕对ACE具有较强的抑制作用[25]。
微生物发酵过程改变可食用种子及其制品淀粉结构且产生活性成分,使得发酵产品可以抑制α-淀粉酶和α-葡萄糖苷酶的活性,具有降血糖的潜力。全麦羽扇豆、藜麦和小麦经罗伊氏乳酸杆菌发酵后3种发酵谷物对α-葡萄糖苷酶抑制活性增强,其中羽扇豆的抑制作用最强,且发酵藜麦具有较强的抑制α-淀粉酶活性[32]。双歧杆菌发酵的羽扇豆和藜麦对α-葡萄糖苷酶抑制作用显著增加[33]。小麦粉中添加10%~20%发酵大麦粉的挂面蒸煮与感官品质虽有所下降,但可降低面条的预测血糖生成指数,使其成为中血糖生成指数的食物[51]。用植物乳杆菌发酵大麦提取β-葡聚糖,与未发酵相比,发酵后的β-葡聚糖能更好抑制α-淀粉酶、α-葡萄糖苷酶和脂肪酶的活性以及胆固醇的吸附[6]。Lopes等[52]发现发酵增强了藜麦降低具有高水平简单碳水化合物饮食血糖生成指数的能力,在喂食补充有发酵藜麦日粮的大鼠中,食物摄入、血糖和脂质水平以及附睾脂肪组织的积累均有所降低,表明发酵的藜麦具有潜在的降血糖和减脂作用。
天然酚类、多肽类、氨基酸类、多糖类等多种生物活性物质被认为是潜在的抑癌活性成分,发酵食用种子及其制品具有抑癌作用。全麦羽扇豆、藜麦和小麦经罗伊氏乳酸杆菌发酵后,3种发酵谷物对结肠癌细胞(Caco-2)和乳腺癌细胞(MCF-7)具有抑制增殖活性的作用[32]。双歧杆菌发酵的羽扇豆、藜麦、小麦对结肠癌细胞(Caco-2)和乳腺癌细胞(MCF-7)具有细胞毒性活性[33]。Xiao等[53]用植物乳杆菌Dy-1发酵大麦提取物可以通过调控细胞凋亡相关蛋白,以时间和剂量依赖性方式抑制癌细胞HT-29的增殖。Jo等[54]从发酵大麦中分离出的BF-E2-P多糖可以激活小鼠的先天免疫系统,抑制结肠26-M3.1癌细胞的转移。
研究结果表明发酵后的食用种子及其制品产品含有多种活性成分,还具有减脂功效。程珂等[55]发现用植物乳杆菌发酵大麦的提取物能显著降低秀丽隐杆线虫的脂肪沉积,而未发酵的大麦提取物则未见此效果,从发酵大麦中分离出浓度为16 μg/mL酚类化合物、480 μg/mL 蛋白质、480 μg/mL 总糖,分别能使秀丽线虫的脂肪沉积量下降39%、26%及12%,发酵大麦提取物能显著抑制秀丽线虫体内脂肪的积累,其中酚类化合物降低脂肪沉积的效果尤为显著。孙鑫娟等[56]发现用植物乳杆菌发酵大麦的β-葡聚糖和未发酵大麦β-葡聚糖均能显著提高线虫的运动行为能力,从而增加线虫的能量消耗,以减少线虫的体内脂肪沉积,在相同剂量时发酵的大麦β-葡聚糖的抑制效果优于未发酵大麦β-葡聚糖。Jo等[54]发现植物乳杆菌dy-1发酵大麦的提取物和酚类化合物能够明显抑制3T3-L1脂肪细胞的脂肪生成且增强褐变,而未发酵的大麦提取物则无此效果。Xiao等[57]发现发酵的大麦提取物可以降低高脂饮食诱导的肥胖SD大鼠的体重、血脂白色脂肪的质量和棕色脂肪细胞的大小,获得更多的肩胛棕色脂肪并促进线粒体中的脱氢酶活性,通过激活棕色脂肪产热,增加棕色脂肪质量和能耗的增加,降低了大鼠的肥胖。
某些发酵食用种子及其制品的提取物具有胃肠道保护、提高免疫力等作用。Lim等[58]发现三重发酵大麦提取物通过加强机体抗氧化防御系统和抗炎作用对胃黏膜损伤的大鼠具有积极的胃保护作用。Kim等[59]发现从发酵的大麦中分离出的多糖可以增强巨噬细胞免疫活性。
发酵技术在改性食用种子方面具有很大的潜力,可以促进食用种子及其制品更加符合加工生产的需要或具有潜在的健康益处。食用种子作为饮食的重要来源,为机体提供大量的营养成分,发酵技术对食用种子及其制品的改性策略使得研究者可以更好地研究开发新型加工基质或健康产品。
目前国内对于发酵改性食用种子及其制品的研究还是停留在饲料加工层面。近年来,粗粮化饮食观念的普及使得研究者热衷于开发感官品质优良且更具健康益处的谷物产品,口感粗糙被人们广泛应用于饲料的可食用种子及其制品重新回到了人们的视野,发酵技术的引入使其加工品质得到了明显的改善且具有更好的营养价值。利用发酵技术改性食用种子及其制品,有利于资源的开发利用且提供合理的饮食导向,可推动食品产业的发展。
[1]SANDHU K S,PUNIA S.Enhancement of bioactive compounds in barley cultivars by solid substrate fermentation[J].Journal of Food Measurement and Characterization,2017,11(3):1355-1361.
[2]MOK W K,TAN Y X,LEE J,et al.A metabolomic approach to understand the solid-state fermentation of okara using Bacillus subtilis WX-17 for enhanced nutritional profile[J].AMB Express,2019,9(1):60.
[3]寇娟妮,李松文,辛寒晓,等.灵芝发酵小麦的营养特性与抗氧化能力[J].中国粮油学报,2018,33(12):7-13.KOU Juanni,LI Songwen,XIN Hanxiao,et al.Nutritional characteristics and antioxidant capacity of wheat fermented by Ganoderma lucidum[J].Journal of the Chinese Cereals and Oils Association,2018,33(12):7-13.
[4]GAN R Y,LI H B,GUNARATNE A,et al.Effects of fermented edible seeds and their products on human health:bioactive components and bioactivities[J].Comprehensive Reviews in Food Science and Food Safety,2017,16(3):489-531.
[5]GUPTA M,BAJAJ B K.Development of fermented oat flour beverage as a potential probiotic vehicle[J].Food Bioscience,2017,20:104-109.
[6]XIAO X,TAN C,SUN X J,et al.Effects of fermentation on structural characteristics and in vitro physiological activities of barley βglucan[J].Carbohydrate Polymers,2020,231:115685.
[7]RIZZELLO C G,VERNI M,KOIVULA H,et al.Influence of fermented Faba bean flour on the nutritional,technological and sensory quality of fortified pasta[J].Food & Function,2017,8(2):860-871.
[8]寇芳.发酵小米菌株的鉴定及其对淀粉结构、老化性质的影响[D].大庆:黑龙江八一农垦大学,2018.KOU Fang.Identification of fermented millet strain and its effect on starch structure and aging properties[D].Daqing:Heilongjiang Bayi Agricultural University,2018.
[9]HANDA C L,DE LIMA F S,GUELFI M F G,et al.Parameters of the fermentation of soybean flour by Monascus purpureus or Aspergillus oryzae on the production of bioactive compounds and antioxidant activity[J].Food Chemistry,2019,271:274-283.
[10]GUPTA M,BAJAJ B K.Functional characterization of potential probiotic lactic acid bacteria isolated from kalarei and development of probiotic fermented oat flour[J].Probiotics and Antimicrobial Proteins,2018,10(4):654-661.
[11]ZHAO T,LI X P,ZHU R Z,et al.Effect of natural fermentation on the structure and physicochemical properties of wheat starch[J].Carbohydrate Polymers,2019,218:163-169.
[12]SUSI,AGUSTINA L,WIBOWO C.A preliminary study on the rehydration characteristics and cooking time of analog rice from the formulation of modified Nagara bean flour through L.plantarum fermentation and sago starch[J].IOP Conference Series:Earth and Environmental Science,2019,255:012013.
[13]葛云飞,康子悦,沈蒙,等.高粱自然发酵对淀粉分子结构及老化性质的影响[J].食品科学,2019,40(18):35-40.GE Yunfei,KANG Ziyue,SHEN Meng,et al.Effect of natural fermentation on molecular structure and retrogradation properties of Sorghum starch[J].Food Science,2019,40(18):35-40.
[14]BATISTA R D,DE CÁSSIA SOUSA MENDES D,MORAIS C C,et al.Physicochemical,functional and rheological properties of fermented and non-fermented starch from canary seed(Phalaris canariensis)[J].Food Hydrocolloids,2020,99:105346.
[15]REYES I,CRUZ-SOSA F,ROMAN-GUERRERO A,et al.Structural changes of corn starch during Saccharomyces cerevisiae fermentation[J].Starch-Stärke,2016,68(9-10):961-971.
[16]REYES I,HERNÁNDEZ J C,MERAZ M,et al.Physicochemical changes OF corn starch during lactic acid fermentation with Lactobacillus bulgaricus[J].Revista Mexicana De Ingeniería Química,2018,17(1):279-288.
[17]程鑫.乳酸菌发酵对糙米蒸煮食用品质改良效果的研究[D].无锡:江南大学,2018.CHENG Xin.Study on improving cooking and eating qualities of brown rice by lactic acid bacteria fermentation[D].Wuxi:Jiangnan University,2018.
[18]PRANOTO Y,ANGGRAHINI S,EFENDI Z.Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of Sorghum flour[J].Food Bioscience,2013,2:46-52.
[19]王旭东,刘景圣,蔡丹,等.黑曲霉发酵对高粱粉理化和加工特性的影响[J].食品工业,2017,38(9):158-162.WANG Xudong,LIU Jingsheng,CAI Dan,et al.Effect of Aspergillus niger on the physicochemical and processing properties of Sorghum flour[J].The Food Industry,2017,38(9):158-162.
[20]XING X L,SUO B,YANG Y,et al.Application of Lactobacillus as adjunct cultures in wheat dough fermentation[J].Journal of Food Science,2019,84(4):842-847.
[21]REZAEI S,NAJAFI M A,HADDADI T.Effect of fermentation process,wheat bran size and replacement level on some characteristics of wheat bran,dough,and high-fiber Tafton bread[J].Journal of Cereal Science,2019,85:56-61.
[22]LI L,WANG Z,LI L M,et al.Effects of fermented wheat bran on flour,dough,and steamed bread characteristics[J].Journal of Chemistry,2018,2018:1-7.
[23]ZHANG Y,SHI C Y,WANG C,et al.Effect of soybean meal fermented with Bacillus subtilis BS12 on growth performance and small intestinal immune status of piglets[J].Food and Agricultural Immunology,2018,29(1):133-146.
[24]刘红艳.双孢蘑菇固态发酵对谷物营养成分及抗氧化性的影响[D].太原:山西大学,2018.LIU Hongyan.Effects of solid-state fermentation with Agaricus bisporus on nutritional components and antioxidant properties of cereals[D].Taiyuan:Shanxi University,2018.
[25]DAI C H,MA H L,HE R H,et al.Improvement of nutritional value and bioactivity of soybean meal by solid-state fermentation with Bacillus subtilis[J].LWT-Food Science and Technology,2017,86:1-7.
[26]SHI C Y,ZHANG Y,LU Z Q,et al.Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value[J].Journal of Animal Science and Biotechnology,2017,8(1):1-9.
[27]KOISTINEN V M,MATTILA O,KATINA K,et al.Metabolic profiling of sourdough fermented wheat and rye bread[J].Scientific Reports,2018,8(1):5684.
[28]RIZZELLO C G,LORUSSO A,RUSSO V,et al.Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria[J].International Journal of Food Microbiology,2017,241:252-261.
[29]DE PASQUALE I,PONTONIO E,GOBBETTI M,et al.Nutritional and functional effects of the lactic acid bacteria fermentation on gelatinized legume flours[J].International Journal of Food Microbiology,2020,316:108426.
[30]BEI Q,WU Z Q,CHEN G.Dynamic changes in the phenolic composition and antioxidant activity of oats during simultaneous hydrolysis and fermentation[J].Food Chemistry,2020,305:125269.
[31]吴寒.米根霉和乳酸菌混合固态发酵对燕麦营养及功能性的影响[D].南京:南京农业大学,2015.WU Han.Effects on nutrition and bio-functionality of oats by mixed solid-state fermentation with Rhizopus oryzae and lactic acid bacteria[D].Nanjing:Nanjing Agricultural University,2015.
[32]AYYASH M,JOHNSON S K,LIU S Q,et al.In vitro investigation of bioactivities of solid-state fermented lupin,quinoa and wheat using Lactobacillus spp.[J].Food Chemistry,2019,275:50-58.
[33]AYYASH M,JOHNSON S K,LIU S Q,et al.Cytotoxicity,antihypertensive,antidiabetic and antioxidant activities of solid-state fermented lupin,quinoa and wheat by Bifidobacterium species:In-vitro investigations[J].LWT-Food Science and Technology,2018,95:295-302.
[34]APRODU I,BOLEA C,BANU I,et al.Effect of lactic fermentation on nutritional potential of multigrain flours based on wheat,rye and oat[J].The Annals of the University Dunarea De Jos of Galati Fascicle VI-Food Technology,2019,43(1):69-80.
[35]ÖZKAYA H,ÖZKAYA B,DUMAN B,et al.Effect of dephytinization by fermentation and hydrothermal autoclaving treatments on the antioxidant activity,dietary fiber,and phenolic content of oat bran[J].Journal of Agricultural and Food Chemistry,2017,65(28):5713-5719.
[36]CHEN G,LIU Y,ZENG J R,et al.Enhancing three phenolic fractions of oats(Avena sativa L.)and their antioxidant activities by solid-state fermentation with Monascus anka and Bacillus subtilis[J].Journal of Cereal Science,2020,93:102940.
[37]王家琛,刘素纯,刘善鑫.冠突散囊菌发酵燕麦对多酚含量影响的研究[J].中国酿造,2017,36(8):104-108.WANG Jiachen,LIU Suchun,LIU Shanxin.Effect of Eurotium cristatum fermentation on polyphenol content in oats[J].China Brewing,2017,36(8):104-108.
[38]SIMWAKA J E,CHAMBA M V M,HUIMING Z,et al.Effect of fermentation on physicochemical and antinutritional factors of complementary foods from millet,sorghum,pumpkin and amaranth seed flours[J].International Food Research Journal,2017,24(5):1869-1879
[39]ZIELISKI H,SZAWARA-NOWAK D,B
CZEK N,et al.Effect of liquid-state fermentation on the antioxidant and functional properties of raw and roasted buckwheat flours[J].Food Chemistry,2019,271:291-297.
[40]CHIBUIKE O A,AGWARANZE D I,ALIBA N V,et al.Fermentation by lactic acid bacteria consortium and its effect on anti-nutritional factors in maize flour[J].Journal of Biological Sciences,2018,19(1):17-23.
[41]JEONG D Y,DAILY J W,LEE G H,et al.Short-term fermented soybeans with Bacillus amyloliquefaciens potentiated insulin secretion capacity and improved gut microbiome diversity and intestinal integrity to alleviate Asian type 2 diabetic symptoms[J].Journal of Agricultural and Food Chemistry,2020,68(46):13168-13178.
[42]MURAI T,JIN S,ITOH M,et al.Analysis of steryl glucosides in rice bran-based fermented food by LC/ESI-MS/MS[J].Steroids,2020,158:108605.
[43]XIE C,CODA R,CHAMLAGAIN B,et al.In situ fortification of vitamin B12 in wheat flour and wheat bran by fermentation with Propionibacterium freudenreichii[J].Journal of Cereal Science,2018,81:133-139.
[44]ZIELI SKI H,HONKE J,B
CZEK N,et al.Bioaccessibility of D-chiro-inositol from water biscuits formulated from buckwheat flours fermented by lactic acid bacteria and fungi[J].LWT-Food Science and Technology,2019,106:37-43.
[45]GABRIELE M,SPARVOLI F,BOLLINI R,et al.The impact of sourdough fermentation on non-nutritive compounds and antioxidant activities of flours from different Phaseolus vulgaris L.genotypes[J].Journal of Food Science,2019,84(7):1929-1936.
[46]SPAGGIARI M,RICCI A,CALANI L,et al.Solid state lactic acid fermentation:A strategy to improve wheat bran functionality[J].LWT,2020,118:108668.
[47]王梅,谢全喜,侯楠楠,等.三种益生菌发酵剂固态发酵对豆粕营养品质的影响[J].中国酿造,2020,39(2):115-119.WANG Mei,XIE Quanxi,HOU Nannan,et al.Effects of solid-state fermentation of three probiotic fermentation starters on the nutritional quality of soybean meal[J].China Brewing,2020,39(2):115-119.
[48]YILDIRIM R M,ARICI M.Effect of the fermentation temperature on the degradation of phytic acid in whole-wheat sourdough bread[J].LWT,2019,112:108224.
[49]张拓.Bacillus subtilis NH的分离及玉米皮发酵参数的优化研究[D].杨凌:西北农林科技大学,2017.ZHANG Tuo.Isolation of Bacillus subtilis NH and study on optimizing the fermentation parameters of corn bran[D].Yangling:Northwest A&F University,2017。
[50]RUAN S Y,LUO J,LI Y L,et al.Ultrasound-assisted liquid-state fermentation of soybean meal with Bacillus subtilis:Effects on peptides content,ACE inhibitory activity and biomass[J].Process Biochemistry,2020,91:73-82.
[51]徐田,张家艳,肖香,等.植物乳杆菌发酵大麦粉对挂面品质及消化特性的影响[J].中国食品学报,2019,19(3):153-159.XU Tian,ZHANG Jiayan,XIAO Xiang,et al.Effects of Lactobacillus plantarum dy-1 fermented barley on quality and in vitro starch digestion properties of noodle[J].Journal of Chinese Institute of Food Science and Technology,2019,19(3):153-159.
[52]LOPES C D O,BARCELOS M D F P,VIEIRA C N D G,et al.Effects of sprouted and fermented quinoa(Chenopodium quinoa)on glycemic index of diet and biochemical parameters of blood of Wistar rats fed high carbohydrate diet[J].Journal of Food Science and Technology,2019,56(1):40-48.
[53]XIAO X,BAI J,ZHANG J,et al.Inhibitory effect of fermented selected barley extracts with Lactobacillus plantarum dy-1 on the proliferation of human HT-29 Cells[J].Journal of Food Biochemistry,2019,43(11):e12989.
[54]JO M,JUNG J H,KIM H W,et al.Polysaccharide isolated from fermented barley activates innate immune system and anti-tumor metastasis in mice[J].Journal of Cereal Science,2020,92:102919.
[55]程珂,肖香,赵延胜,等.发酵大麦提取物抑制秀丽隐杆线虫的脂肪沉积[J].现代食品科技,2018,34(6):46-50,56.CHENG Ke,XIAO Xiang,ZHAO Yansheng,et al.Effects of fermented barley extracts on the fat deposition of Caenorhabditis elegans[J].Modern Food Science and Technology,2018,34(6):46-50,56.
[56]孙鑫娟,肖香,赵延胜,等.发酵大麦β-葡聚糖抑制秀丽隐杆线虫体内的脂肪沉积[J].现代食品科技,2019,35(2):1-6.SUN Xinjuan,XIAO Xiang,ZHAO Yansheng,et al.Study on the inhibition of fat deposition of Caenorhabditis elegans by fermented barley β-glucan[J].Modern Food Science and Technology,2019,35(2):1-6.
[57]XIAO X,BAI J,LI M S,et al.Supplementation of fermented barley extracts with Lactobacillus plantarum dy-1 inhibits obesity via a UCP1-dependent mechanism[J].Biomedical and Environmental Sciences,2019,32(8):578-591.
[58]LIM J M,SONG C H,PARK S J,et al.Protective effects of triple fermented barley extract(FBe)on indomethacin-induced gastric mucosal damage in rats[J].BMC Complementary and Alternative Medicine,2019,19(1):1-11.
[59]KIM H W,SHIN M S,LEE S J,et al.Signaling pathways associated with macrophage-activating polysaccharides purifified from fermented barley[J].International Journal of Biological Macromolecules,2019,131:1084-1091.
Research Progress in the Fermentation Technology of Modified Edible Seeds and Their Products
王晓燕,孙培利,焦捷,等.发酵技术对食用种子及其制品改性的研究进展[J].食品研究与开发,2021,42(18):197-203.
WANG Xiaoyan,SUN Peili,JIAO Jie,et al.Research Progress in the Fermentation Technology of Modified Edible Seeds and Their Products[J].Food Research and Development,2021,42(18):197-203.