微生物来源的果聚糖的功能与应用

微生物来源的果聚糖的功能与应用

韩瑨1,吴正钧1,2,*,鄢明辉2,游春苹3,高彩霞3
(1.乳业生物技术国家重点实验室,上海200436;2.上海乳业生物工程技术研究中心,上海200436;3.光明乳业研究院,光明乳业股份有限公司,上海200436)

摘 要:果聚糖levan是一类典型的果糖聚合物,主要由微生物产生的levan蔗糖酶以蔗糖为底物来合成的,其主链由果糖以β-(2,6)糖苷键键合而成,并伴有少量β-(2,1)糖苷键的支链。本文从来源、功能与应用的角度总结了levan的研究进展,并对其发展趋势进行了展望。

关键词:果聚糖;来源;功能;应用

*通信作者

Levan是一类典型的果糖聚合物,其主链由果糖以β-(2,6)糖苷键键合而成,并伴有少量β-(2,1)糖苷键的支链。Levan的来源相当广泛,它不仅存在于植物[1]中,也可以由微生物[2]代谢产生。微生物来源的levan的合成与levan蔗糖酶(levansucrase,β-2,6-fructan,EC 2.4.1.10)有关,这是一类属于糖苷酶家族GH68的果糖基转移酶(fructosyltransferase),具有水解蔗糖和转移果糖基的双重活性[3](如图1所示)。

由于微生物发酵制备levan的周期短、成本低且工艺简便,因此成为工业化生产levan的主要途径。前期陆娟等总结了levan生产与应用方面的研究进展[4],而本文将从来源、功能与应用角度对levan的国内外研究成果进一步综合论述。

图1 Levansucrase水解蔗糖合成levan的机制
Fig.1 Mechanism for the synthesis of levan from sucrose by levansucrase

1 levan的来源

1.1 微生物来源

微生物是自然界中levan的主要来源,1990年Han YW总结了28个种/属的levan产生菌[2],随着对levan研究的不断深入,乳杆菌(Lactobacillus)、明串珠菌(Leuconostoc)、链球菌属(Streptococcus)等一些被公认可安全食用的益生菌也被发现可以产生levan。到目前为止,产levan菌株的覆盖面已达到了近30个属、40余种,相关报道如表1所示。

表1 产levan菌株的生物分类学地位
Table 1 Biological taxonomies of strains producing levan

注:“-”未进一步鉴定具体种不可知。

中文菌名  参考文献Acetobacter Acetobacter pasteurianus  巴氏醋酸杆菌 [5] Acetomonas sp. -  醋单胞菌属 [6] Achromobacter sp. -  无色杆菌属 [2] Actinomyces Actinomyces viscosus  粘性放线菌 [7] Aerobacter Aerobacter aerogenes  产气气杆菌 [8] Aerobacter levanicum  产左聚糖气杆菌 [9] Arthrobacter Arthrobacter ureafaciens  产脲节杆菌 [10] Arthrobacter nicotinovorans  食烟碱节杆菌 [11] Aspergillus Aspergillus sydowii  聚多曲霉 [5] Aspergillus versicolor  花斑曲霉 [5] Azotobacter Azotobacter chroococum  褐球固氮菌 [12] Bacillus Bacillus amyloliquefaciens  解淀粉芽胞杆菌 [13] Bacillus circulans  环状芽胞杆菌 [14] Bacillus licheniformis  地衣芽孢杆菌 [15] Bacillus megaterium  巨大芽孢杆菌 [16] Bacillus mesentericus  炭疽芽孢杆菌 [17] Bacillus subtilis  枯草芽孢杆菌 [18] Bacillus polymyxa  多黏芽孢杆菌 [19] Corynebacterium Corynebacterium laevaniformans  产左聚糖棒状杆菌 [20] Corynebacterium beticola  栖甜菜棒状杆菌 [21] Erwinia Erwinia amylovora  解淀粉欧文氏菌 [22] Erwinia herbicola  草生欧文氏菌 [23] Geobacillus Geobacillus Stearothermophilus  嗜热脂肪土芽孢杆菌 [24] Gluconoacetobacter Gluconoacetobacter xylinus  葡萄糖木质醋酸菌 [25] Gluconobacter Gluconobacter oxydans  氧化葡萄糖酸杆菌 [26] Gluconobacter frateurii  弗托氏葡萄糖酸杆菌 [27] Gluconobacter cerinus  蜡状葡萄糖酸杆菌 [27] Halomonas sp. -  盐单胞菌属 [28] Lactobacillus Lactobacillus gasseri  加氏乳杆菌 [29] Lactobacillus reuteri  罗伊氏乳杆菌 [30] Lactobacillus sanfranciscensis  旧金山乳杆菌 [31] Leuconostoc Leuconostoc Mesenteroides  肠膜明串珠菌 [32] Microbacterium Microbacterium laevaniformans  产左聚糖微杆菌 [33] Odontomyces Odontomyces viscosus  粘性牙霉菌 [34] Paenibacillus Paenibacillus polymyxa  多粘类芽孢杆菌 [35] Phytomonas Phytomonas pruni  桃李植物单胞菌 [16] Pseudomonas Pseudomonas syringae  丁香假单胞菌 [36] Pseudomonas aureofaciens  金色假单胞菌 [37] Pseudomonas mors-prunorum  死李假单胞菌 [38] Pseudonomas chlororaphis  绿针假单胞菌 [39] Pseudonomas fluorescens  荧光假单胞菌 [39] Rahnella Rahnella aquatilis  水生拉恩氏菌 [40] Rothis Rothis dentocariosa  频齿罗氏菌 [2] Saccharomyces Saccharomyces cerevisiae  酿酒酵母 [41] Serratia sp. -  沙雷氏菌属 [42] Streptococcus Streptococcus salivarius  唾液链球菌 [43] Xanthomonas sp. -  黄单胞菌属 [2] Zymomonas Zymomonas mobilis  运动发酵单胞菌 [44]属种

发酵单胞菌(Zymomonas)是最早被发现可以产levan的细菌,其中的Z. mobilis至今依然是大规模生产levan的重要工业微生物。值得关注的是,乳杆菌产生的levan具有益生元的作用[31]、而明串珠菌合成的levan具有良好的安全性[32],预示此类果聚糖在食品、医药领域具有潜在的应用价值。

1.2 植物来源

植物来源的levan主要存在于草本植物。Challinor SW等从粗茎早熟禾(Poa trivialis)中分离得到了一种与菊粉(inulin)结构类似的多糖类物质,通过对其乙酰基和甲基衍生物的分析表明是果聚糖levan[1]。Ende VD等发现levan在常绿植物富贵草(Pachysandra terminalis)中也有积累[45]。此外,通过分子生物学的手段,Banguela等将G. diazotrophicus中编码levansucrase的基因导入烟草中并成功获得表达,烟叶中levan含量最高可占转基因烟叶的70 %[46]

2 levan的功能与应用

2.1 抗癌、抗肿瘤作用

Leibovici等认为,Levan的抗肿瘤效果来自于果聚糖对肿瘤细胞的直接作用[47],每天以静脉注射的方式将levan与传统抗肿瘤药物(环磷酰胺、甲氨蝶呤、长春新碱、5-氟尿嘧啶)分别或共同作用于患有路易士肺癌的老鼠,发现levan与环磷酰胺联合使用比单独使用所发挥的抗肿瘤效果更佳,2 mg levan配以10 mg环磷酰胺作用于受试对象时,其癌细胞的生长可完全被抑制,这说明除了自身具有的肿瘤细胞生长抑制作用外,levan还能消除细胞毒素剂对免疫系统的毒害作用[48]。Liu等发现,levan的乙酰化、磷酸化和苯基化衍生物普遍拥有比天然levan更高的抑制肿瘤细胞增殖的能力,可能是在levan中引入特殊基团后,其供电子能力得到的提高,从而增强了多糖分子与免疫细胞上受体的亲和力[35],而另一种理论认为,levan衍生物可以通过线粒体途径破坏DNA,进而诱导肿瘤细胞发生凋亡的[49]。Yoo等发现,来自M. laevaniformans (Mw=710,000)、R. aquatilis(Mw=380,000)和Z. mobilis (Mw=570,000)的levan对肉瘤180细胞有强烈的生长抑制作用,其平均抑制活性可达到66 %,而G. xylinus产生的levan(Mw=40,000)抗肿瘤效果显著低于上述3种levan,仅为42 %[25],并且随着levan分支化程度的降低,其抗肿瘤活性也会不同程度地下降[50],由此可见,Levan的抗肿瘤活性与多糖的分子量和分支化程度有关。

2.2 抗菌、抗病毒作用

研究表明,levan对食源性致病菌普遍具有抗菌作用,尤其是低分子量levan可明显降低面包中腐败菌和致病菌的存活率,levan诱导产生渗透压的变化、或者通过减少水分活度从而干扰细菌对营养成分的吸收是可能的主因[51]。Esawy从不同蜂蜜中分离得到多株产levan的B. subtilis,其中来自菌株K、M、E的levan可抑制致病性禽流感病毒HPAI和H5N1的活性,而菌株A、M的levan对40型腺病毒有抑制活性[52]

2.3 降血糖作用

2011年,Dahech等将levan每天以小鼠体重5 %的剂量通过口服途径作用于四氧嘧啶诱导的糖尿病小鼠,60天后伴随着受试对象的肝糖元水平提高了52 %,血浆中的葡萄糖水平相应地降低了52 %,同时,小鼠肝、肾、胰腺和心脏中硫代巴比妥酸反应物质(TBARS)的含量下降了31 %、41 %、39 %和25 %,而超氧化物歧化酶(SOD)和过氧化氢酶(CAT)水平均有一定程度的提高,更重要的是,levan显著降低了受试小鼠肝脏、肾中碱性磷酸酶(ALP)、天冬氨酸转氨酶(AST)和乳酸转氨酶(ALT)的活性、胆红素、肌氨酸酐和尿素水平等指标。表明levan可将异常的氧化指标恢复到正常水平,这是首次发现levan对高血糖和糖尿病引发的氧化应激具有一定的控制作用[53]

2.4 降血脂、降胆固醇作用

为了考察levan对高胆固醇饮食小鼠的降胆固醇作用,研究人员每天以体重5 %剂量将levan通过口服途径作用于受试对象,60天后样品组小鼠(同时摄入levan和高胆固醇食物)血液中的高密度脂蛋白胆固醇(HDL-cholesterol)水平与对照组(仅摄入高胆固醇食物)相比有所上升,而低密度脂蛋白胆固醇(LDL-cholesterol)水平大幅下降,其作用机理是levan扰乱体内类固醇肝肠循环的结果,此项研究为levan对与动脉粥样硬化有关的氧化应激的保护作用提供了依据[54]

2.5 免疫增强作用

Levan的免疫增强作用较多被证实于鱼类的免疫系统。被嗜水气单胞菌(Aeromonas hydrophila)感染的鲤鱼(Cyprinus carpio)和露斯塔野鲮(Labeo rohita)经长期饲喂一定浓度(0.5 %和1.25 %)的levan后,受试对象存活率大幅提高,数据显示,前者血液中红血球数量和血红蛋白含量明显增加[55],而后者肝脏中浸润了白细胞但肾小管只发生了中度退化[56],不仅如此,Levan对暴露于亚致死剂量氟虫腈(Fipronil,一种苯基吡唑类杀虫剂)环境下的鲤鱼同样有免疫刺激和保护作用[57]

2.6 同种移植排斥延迟作用

同种移植排斥反应是同种器官或组织移植时,受体免疫系统对移植物产生的排异反应,而levan可延缓这种排斥反应,延长移植物的存活时间。当高分子量Levan每日以15 mg~30 mg剂量作用于Balb/c和C57BL受体小鼠时,可分别延长两者的排斥反应3.6 d和5.6 d[58],levan的这种抑制功效既不是果聚糖对移植床的生理破坏所产生的,也不是机械性干预的结果[59],血液中被激活的单核细胞对移植物的浸润作用是关键因素[60]

2.7 减肥作用

高分子量levan的减肥作用是近年来被发现的另一种益生功能,相关实验表明,当levan以体重10 %剂量作用于高脂肪饮食诱导引发的肥胖症老鼠4周后,受试对象的体重明显降低,该效果与levan摄入量呈一定剂量效应[61]。另一项研究显示,饲喂levan与发酵红参组合物可有效降低肥胖小鼠的体重、总胆固醇和空腹血糖水平,并减少体内脂肪含量。上述结果表明,以单独或复合形式向食物中添加levan均有助于抑制由饮食引发的肥胖症[62]

2.8 益生元作用

作为一种特殊的外源性碳源,高分子量Levan (2 000 ku)可大幅提高双歧杆菌在牛奶发酵过程中的细胞增殖效果,进一步研究发现,当以levan为碳源时,发酵液上清中存在β-果聚糖水解酶活性,双歧杆菌因为具有上述果聚糖水解酶活性,可以利用低聚果糖或寡聚果糖[63]进行增殖。有趣的是,Levan对微生物的这种促生长作用是有选择性的,数据显示,长期食用levan的罗斯肉鸡盲肠内的乳杆菌、双歧杆菌等有益菌数量均有所增加,而大肠杆菌、产气荚膜梭菌等有害菌浓度却在降低[64]

2.9 成膜特性

纯粹的levan因易碎而难于单独成膜,但Barone等指出,向levan中添加20 %(质量分数)甘油不但可有效地提高其塑化效果,而且增加了levan结构中氢键的相互作用,从而有更有助于levan的成膜[65]。以Levan和少量蒙脱黏土(montmorillonite clay)为原料制备成的纳米复合材料可形成一种网状结构,这种特殊结构极大地改善了levan的热学和力学特性[66]

2.10 用于蛋白的分离、纯化和固定

凝集素(Lectin)是一类可特异性识别碳水化合物,并与其可逆结合的蛋白,Angeli等利用levan和磁铁的混合物对Cramoll 1(一种凝集素)有特异性吸附的特性,将制备步骤由原来的三步简化为两步,操作难度降低的同时还大大减少了制备成本[67],而levan与聚乙二醇(PEG)混合组成的双水相系统则表现出对生物蛋白的分离特性,但分离效果受pH影响较大[68]。此外,带有磁性的levan颗粒还可作为一种基质在胰蛋白酶固定化中发挥积极的作用,被固定的酶衍生物反复使用10次后仅损失16 %的活性[69]

2.11 其他功能与应用

除了上述功能与应用外,根据来源与特性的不同,Levan还可在代血浆[70]、纳米载体[71]、静电纺丝[72]以及化妆品[73]等诸多方面发挥作用。

3  展望

Levan是一种天然的果糖聚合物,存在于多种植物和微生物发酵产物中,虽然在甘蔗汁加工业中是不受欢迎的微生物代谢产物,但在医药临床和食品加工方面具有一定的应用价值,近年来受到研究者的关注。有关levan的报道最早可追溯到20世纪30年代,至今相关研究已遍布产量优化、结构解析、作用机理、功能特性等多个领域,然而,依然存在一些问题有待解决:①levan在现有培养基中的产量普遍较低,有必要从培养基组成、培养条件、变异诱导以及异源表达等方面入手进一步提高产量;②酶法产糖是目前levan的主要制备途径,因此有必要对温度、pH、离子强度等环境因素研究以保持或提高酶的稳定性与活性;③大多数levan的产生菌属于致病菌,有必要筛选类似Lactobacillus的高安全性levan产生菌,从而更好地应用于食品与医疗行业。

参考文献:

[1] CHALLINOR S, HAWORTH W, HIRST E. The carbohydrates of grass. Isolation of a polysaccharide of the levan type[J]. J Chem Soc, 1934: 1560-1564

[2] HAN Y W, CLARKE M A. Production and characterization of microbial levan[J]. Journal of Agricultural and Food Chemistry, 1990, 38 (2): 393-396

[3] SHIDA T, MUKAIJO K, ISHIKAWA S, et al. Production of Longchain Levan by a sacC Insertional Mutant from Bacillus subtilis 327UH[J]. Bioscience, Biotechnology, and Biochemistry, 2002, 66(7): 1555-1558

[4]陆娟,唐俊,肖敏,等. Levan果聚糖的应用与生产研究进展[J].生物学杂志, 2013, 30(6): 86-90

[5] LOEWENBERG J R, REESE E T. Observations on microbial fructosans and fructosanases[J]. Canadian journal of microbiology, 1957, 3(4): 643-650

[6] WHITING G, COGGINS R. Levan formation by Acetomonas [J]. Journal of the Institute of Brewing, 1967, 73(5): 442-445

[7] WARNER T N, MILLER C H. Cell-associated levan of Actinomyces viscosus[J]. Infection and immunity, 1978, 19(2): 711-719

[8] SRINIVASAN S, QUASTEL J. Enzymatic syntheses of oligo-and polysaccharides containing D-Glucosamine[J]. Science, 1958, 127 (3290): 143-144

[9] TAKESHITA M. Translucent Colony Form of the Gram-Negative, Levan-Producing Bacterium, Aerobacter levanicum[J]. Journal of bacteriology, 1973, 116(1): 503-506

[10] TANAKA K, KARIGANE T, YAMAGUCHI F, et al. Action of levan fructotransferase of Arthrobacter ureafaciens on levanoligosaccharides[J]. Journal of biochemistry, 1983, 94(5): 1569-1578

[11] SAITO K, GOTO H, YOKOTA A, et al. Purification of Levan Fructo-transferase from Arthrobacter nicotinovorans GS-9 and Production of DFA IV from Levan by the Enzyme[J]. Bioscience, biotechnology, and biochemistry, 1997, 61(10): 1705-1709

[12] HESTRIN S, GOLDBLUM J. Laevanpolyase[J]. Nature, 1953, 172: 1046-1047

[13] M NTS L P, PUNTALA M. Comparison of levansucrase from Bacillus subtilis and from Bacillus amyloliquefaciens[J]. FEMS Microbiology Letters, 1982, 13(4): 395-399

[14] EL-REFAI H A, ABDEL-FATTAH A F, MOSTAFA F A. Enzymic synthesis of levan and fructo-oligosaccharides by Bacillus circulans and improvement of levansucrase stability by carbohydrate coupling [J]. World Journal of Microbiology and Biotechnology, 2009, 25(5): 821-827

[15] DAHECH I, BELGHITH K S, BELGHITH H, et al. Partial purificationofaBacilluslicheniformislevansucraseproducinglevanwithantitumor activity[J]. International journal of biological macromolecules, 2012, 51(3): 329-335

[16] EVANS T, HIBBERT H. Advances in Carbohydrate Chemistry[J]. Academic Press, New York, 1946, 2: 203

[17] HEHRE E J. Enzymic synthesis of polysaccharides: a biological type of polymerization[J]. Advances in Enzymology and Related Areas of Molecular Biology, 1951,11: 297-337

[18] Hibbert H, Brauns F. Studies On Reactions Relating To Carbohydrates And Polysaccharides.: Xxxvi. Structure of the Levan Synthesized by the Action of Bacillus Subtilis on Sucrose[J]. Canadian Journal of Research, 1931, 4(6): 596-604

[19] HAN Y W. Levan production byBacillus polymyxa[J]. Journal of industrial microbiology, 1989, 4(6): 447-451

[20] DIAS F, BHAT J. A new levan producing bacterium, Corynebacterium laevaniformans nov. spec[J]. Antonie van Leeuwenhoek, 1962, 28 (1): 63-72

[21] ABDOU M F.Über eine neue Art eines laevanbildenden Bakteriums aus Zuckerrüben , Corynebacterium beticola [J]. Journal of Phytopathology, 1969, 66(2): 147-167

[22] BERESWILL S, JOCK S, ALDRIDGE P, et al. Molecular characterization of natural Erwinia amylovora strains deficient in levan synthesis[J]. Physiological and Molecular Plant Pathology, 1997, 51(4): 215-225

[23] KEITH J, WILEY B, BALL D, et al. Continuous culture system for production of biopolymer levan using Erwinia herbicola[J]. Biotechnology and bioengineering, 1991, 38(5): 557-560

[24] INTHANAVONG L, TIAN F, KHODADADI M, et al. Properties of Geobacillus stearothermophilus levansucrase as potential biocatalyst for the synthesis of levan and fructooligosaccharides[J]. Biotechnology progress, 2013, 29(6): 1405-1415

[25] YOO S-H, YOON E J, CHA J, et al. Antitumor activity of levan polysaccharides from selected microorganisms[J]. International Journal of Biological Macromolecules, 2004, 34(1): 37-41

[26] ELISASHVILI V. Effect of cyclic adenosine-3', 5'-monophosphate, chloramphenicol and actinomycin D on Gluconobacter oxydans biosynthesis of extracellular levansaccharase[J]. Mikrobiologiia, 1981, 51(3): 436-442

[27] JAKOB F, PFAFF A, NOVOA-CARBALLAL R, et al. Structural analysis of fructans produced by acetic acid bacteria reveals a relation to hydrocolloid function[J]. Carbohydr Polym, 2013, 92(2): 1234-1242

[28] POLI A, KAZAK H, G RLEYENDAGˇB, et al. High level synthesis of levan by a novel Halomonas species growing on defined media[J]. Carbohydr Polym, 2009, 78(4): 651-657

[29] ANWAR M A, KRALJ S, PIQU A V, et al. Inulin and levan synthesis by probiotic Lactobacillus gasseri strains: characterization of three novel fructansucrase enzymes and their fructan products[J]. Microbiology, 2010, 156(4): 1264-1274

[30] HIJUM S A, BONTING K, MAAREL M J, et al. Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced[J]. FEMS microbiology letters, 2001, 205(2): 323-328

[31] BELLO F D, WALTER J, HERTEL C, et al. In vitro study of Prebiotic Properties of Levan-type Exopolysaccharides from Lactobacilli and Non-digestible Carbohydrates Using Denaturing Gradient Gel Electrophoresis[J]. Systematic and Applied Microbiology, 2001, 24 (2): 232-237

[32] SHUKLA R, GOYAL A. Elucidation of structure and biocompatibility of levan from Leuconostoc mesenteroides NRRL B -1149 [J]. Current Trendsin Biotechnologyand Pharmacy,2013,7(2):635-643

[33] BAE I Y, OH I-K, LEE S, et al. Rheological characterization of levan polysaccharides from Microbacterium laevaniformans[J]. International journal of biological macromolecules, 2008, 42(1): 10-13

[34] HOWELL JR A, JORDAN H. Production of an extracellular levan by Odontomyces viscosus[J]. Archives of oral biology, 1967, 12(4): 571-573

[35] LIU J, LUO J, YE H, et al. Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3[J]. Food and Chemical Toxicology, 2012, 50(3): 767-772

[36] LAUE H, SCHENK A, LI H, et al. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae[J]. Microbiology, 2006, 152(10): 2909-2018

[37] Budac A. Impact of Soybean Seed Inoculation With The Levan-Producing Bacteria Pseudomonas Aureofaciens on Soil Invertase And Levansucrase Activities Under Soil Water Stress and Elevated Copper Level[J]. Lucrǎri Stiintifice, 2002,51: 127-134

[38] GILBERT V E, STACEY M. The constitution of a levan produced from sucrose by Pseudomonas mors-prunorum (Wormald)[J]. J Chem Soc, 1948: 1560-1561

[39] FUCHS A. Synthesis of levan by pseudomonads[J]. Nature, 1956: 921

[40] SONG K B, SEO J W, KIM M G, et al. Levansucrase of Rahnella aquatilis ATCC33071: gene cloning, expression, and levan formation[J]. Annals of the New York Academy of Sciences, 1998, 864(1): 506-511

[41] FRANKEN J, BRANDT B A, TAI S L, et al. Biosynthesis of Levan, a Bacterial Extracellular Polysaccharide, in the Yeast Saccharomyces cerevisiae[J]. PloS one, 2013, 8(10): 77499

[42] KOJIMA I, SAITO T, IIZUKA M, et al. Characterization of levan produced by Serratia sp[J]. Journal of fermentation and bioengineering, 1993, 75(1): 9-12

[43] SIMMS P J, BOYKO W J, EDWARDS J R. The structural analysis of a levan produced by Streptococcus salivarius SS2[J]. Carbohydrateresearch, 1990, 208: 193-198

[44] VIIKARI L. Formation of levan and sorbitol from sucrose by Zymomonas mobilis[J]. Applied microbiology and biotechnology, 1984, 19(4): 252-255

[45] VAN DEN ENDE W, COOPMAN M, CLERENS S, et al. Unexpected presence of graminan-and levan-type fructans in the evergreen frost-hardy eudicot Pachysandra terminalis (Buxaceae): purification, cloning, and functional analysis of a 6-SST/6-SFT enzyme[J]. Plant physiology, 2011, 155(1): 603-614

[46] BANGUELA A, ARRIETA J G, RODR GUEZ R, et al. High levan accumulationintransgenictobaccoplantsexpressingthe Gluconacetobacter diazotrophicus levansucrase gene[J]. Journal of biotechnology, 2011, 154(1): 93-98

[47] LEIBOVICI J, STARK Y, ELDAR T, et al. Mechanism of the in -hibitory effect of levan on experimental tumors[J]. Cancer Chemoand Immunopharmacology. Springer, 1980,75: 173-179

[48] LEIBOVICI J, STARK Y, WOLMAN M. Combined effect of levan and cytotoxic agents on the growth of experimental tumours in mice [J]. British journal of experimental pathology, 1983, 64(3): 239

[49] ABDEL-FATTAH A M, GAMAL-ELDEEN A M, HELMY W A, et al. Antitumor and antioxidant activities of levan and its derivative fromtheisolateBacillussubtilisNRC1aza[J]. Carbohydr Polym, 2012, 89(2): 314-322

[50] YOON E J, YOO S-H, CHA J, et al. Effect of levan’s branching structure on antitumor activity[J]. International journal of biological macromolecules, 2004, 34(3): 191-194

[51] BYUN B Y, LEE S J, MAH J H. Antipathogenic activity and preservative effect of levan (β-2, 6-fructan), a multifunctional polysaccharide[J]. International Journal of Food Science & Technology, 2014, 49(1): 238-245

[52] ESAWY M A, AHMED E F, HELMY W A, et al. Production of levansucrase from novel honey Bacillus subtilis isolates capable of producing antiviral levans[J]. Carbohydr Polym, 2011, 86(2): 823-830

[53] DAHECH I, BELGHITH K S, HAMDEN K, et al. Antidiabetic activity of levan polysaccharide in alloxan-induced diabetic rats[J]. International journal of biological macromolecules, 2011, 49 (4): 742-746

[54] BELGHITH K S, DAHECH I, HAMDEN K, et al. Hypolipidemic effect of diet supplementation with bacterial levan in cholesterol-fed rats[J]. International journal of biological macromolecules, 2012, 50 (4): 1070-1074

[55] RAIRAKHWADA D, PAL A, BHATHENA Z, et al. Dietary microbial levan enhances cellular non-specific immunity and survival of common carp (Cyprinus carpio) juveniles[J]. Fish & shellfish immunology, 2007, 22(5): 477-486

[56] GUPTA S, PAL A, SAHU N, et al. Microbial levan in the diet of Labeo rohita Hamilton juveniles: effect on non-specific immunity and histopathological changes after challenge with Aeromonas hydrophila[J]. Journal of fish Diseases, 2008, 31(9): 649-657

[57] GUPTA S K, PAL A K, SAHU N P, et al. Dietary microbial levan ameliorates stress and augments immunity in Cyprinus carpio fry (Linnaeus, 1758) exposed to sublethal toxicity of fipronil[J]. Aquaculture Research, 2012: 893-906

[58] LEIBOVICI J, BLEIBERG I, WOLMAN M. Effect of native levan on homograft rejection in mice[J]. Experimental Biology and Medicine, 1975, 149(2): 348-350

[59] BLEIBERG I, STRASSMAN G, LEIBOVICI J, et al. Effect of Local Administration of Levan on Skin Homograft Rejection in Mice[J]. Experimental Biology and Medicine, 1976, 153(1): 156-157

[60] SHILO M, WOLMAN M, WOLMAN B. Inhibition of inflammatory response of skin to Staphylococcus aureus by high polymer levan[J]. British journal of experimental pathology, 1956, 37(2): 219

[61] KANG S A, HONG K, JANG K-H, et al. Anti-obesity and hypolipidemic effects of dietary levan in high fat diet-induced obese rats[J]. Journal of microbiology and biotechnology, 2004, 14(4): 796-804

[62] LEE S R, HWANG K T, JI G E. The Anti‐Obesity Effects of the Dietary Combination of Fermented Red Ginseng with Levan in High Fat Diet Mouse Model[J]. Phytotherapy Research, 2014, 28(4): 617-622

[63] SEMJONOVS P, ZIKMANIS P. An influence of levan on the fermentation of milk by a probiotic ABT-type starter[J]. Journal of Food Technology, 2007, 5(2): 123-130

[64] ZHAO P, WANG J, KIM I. Effect of dietary levan fructan supplementation on growth performance, meat quality, relative organ weight, cecal microflora, and excreta noxious gas emission in broilers[J]. Journal of animal science, 2013, 91(11): 5287-5293

[65] BARONE J R, MEDYNETS M. Thermally processed levan polymers [J]. Carbohydr Polym, 2007, 69(3): 554-561

[66] CHEN X, GAO H, PLOEHN H J. Montmorillonite-levan nanocomposites with improved thermal and mechanical properties[J]. Carbohydr Polym, 2014, 101: 565-573

[67] ANGELI R, DA PAZ N V, MACIEL J C, et al. Ferromagnetic levan composite: an affinity matrix to purify lectin[J]. BioMed Research International, 2009:

[68] CHUNG B H, KYUNG KIM W, SONG K-B, et al. Novel polyethylene glycol/levan aqueous two-phase system for protein partitioning [J]. Biotechnology Techniques, 1997, 11(5): 327-329

[69] MACIEL J, ANDRAD P, NERI D, et al. Preparation and characterization of magnetic levan particles as matrix for trypsin immobilization[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(7): 1312-1316

[70] SCHECHTER I, HESTRIN S. Use of Levan as an Expander of Blood-Volume*[J]. Vox Sanguinis, 1963, 8(1): 82-85

[71] SEZER A D, KAZAK H,ÖNER E T, et al. Levan-based nanocarrier system for peptide and protein drug delivery: optimization and influence of experimental parameters on the nanoparticle characteristics [J]. Carbohydr Polym, 2011, 84(1): 358-363

[72] MANANDHAR S, VIDHATE S, D’SOUZA N. Water soluble levan polysaccharide biopolymer electrospun fibers[J]. Carbohydr Polym, 2009, 78(4): 794-798

[73] KIM K H, CHUNG C B, KIM Y H, et al. Cosmeceutical properties of levan produced by Zymomonas mobilis[J]. Journal of cosmetic science, 2004, 56(6): 395-406

Progress in the Study of Functionality and Application of Microbial Levan

HAN Jin1,WU Zheng-jun1,2,*,YAN Ming-hui2,YOU Chun-ping3,GAO Cai-xia3
(1. State Key Laboratory of Dairy Biotechnology,Shanghai 200436,China;2. Shanghai Engineering Research Center of Dairy Biotechnology,Shanghai 200436,China;3. Dairy Research Institute,Bright Dairy & Foods Co.,Ltd.,Shanghai 200436,China)

Abstract:Levan,a typical fructose polymer with β-2,6-glycosidic linkage in the backbone and a few β-2,1-glycosidic linkage in the branches,is mainly synthesized by microbial levansucrase with sucrose as the substrate. In this article,the progress in the research and development of levan resource,functionality and application was reviewed and the future perspective is also predicted.

Key words:levan;resource;functionality;application

DOI:10.3969/j.issn.1005-6521.2016.04.046

基金项目:“十二五”国家科技支撑计划课题:发酵乳制品乳酸菌菌种与发酵剂的研究与开发(2013BAD18B01);“十二五”国家863项目:优良益生菌高效筛选与应用关键技术(2011AA100901)

作者简介:韩瑨(1980—),男(汉),高级工程师,硕士,研究方向:乳品科学。

收稿日期:2014-11-18